Key Points

  • STAT6 is a major factor in MF/SS tumorigenesis and a prospective therapeutic target for intervention.

  • STAT6 promotes proliferation and invasion of MF/SS malignant lymphocytes while progressively depressing the anti-tumor immune response.

Abstract

The signal transducer and activator of transcription 6 (STAT6) is a critical up-stream mediator of interleukin-13 (IL-13) and IL-4 signaling and is constitutively activated in malignant lymphocytes from Sezary syndrome (SS) and mycosis fungoides (MF), the most common subtypes of cutaneous T-cell lymphomas. By combining genome-wide expression profiling with pharmacological STAT6 inhibition, we have identified the genes regulated by STAT6 in MF/SS tumors. We found that STAT6 regulates several common pathways in MF/SS malignant lymphocytes that are associated with control of cell-cycle progression and genomic stability as well as production of Th2 cytokines. Using ex vivo skin explants from cutaneous MF tumors as well as Sezary cells derived from the blood of SS patients, we demonstrated that inhibition of STAT6 activation downregulates cytokine production and induces cell-cycle arrest in MF/SS malignant lymphocytes, inhibiting their proliferation but not their survival. Furthermore, we show that STAT6 promotes the protumoral M2-like phenotype of tumor-associated macrophages in the tumor microenvironment of advanced stage MF by upregulating the expression of genes associated with immunosuppression, chemotaxis, and tumor matrix remodeling. Thus, we show STAT6 to be a major factor in the pathogenesis and progression of MF/SS, promoting proliferation and invasion of the malignant lymphocytes while inducing a progressive depression of the antitumor immune response. Together, our results provide new insights into disease pathogenesis and offer new prospective targets for therapeutic intervention.

REFERENCES

1.
Girardi
M
,
Heald
P
,
Wilson
L
.
The pathogenesis of mycosis fungoides
.
N Engl J Med
.
2004
;
350
(
19
):
1978
-
1988
.
2.
Swerdlow
S
,
Campo
E
,
Pileri
S
, et al
.
The 2016 revision of the World Health Organization classification of lymphoid neoplasms
.
Blood
.
2016
;
127
(
20
):
2375
-
2390
.
3.
Arulogun
S
,
Prince
H
,
Ng
J
, et al
.
Long-term outcomes of patients with advanced-stage cutaneous T-cell lymphoma and large cell transformation
.
Blood
.
2008
;
112
(
8
):
3082
-
3087
.
4.
Scarisbrick
J
,
Kim
Y
,
Whittaker
S
, et al
.
Prognostic factors, prognostic indices and staging in mycosis fungoides and Sézary syndrome: where are we now?
Br J Dermatol
.
2014
;
170
(
6
):
1226
-
1236
.
5.
Scarisbrick
J
,
Prince
H
,
Vermeer
M
, et al
.
Cutaneous Lymphoma International Consortium Study of Outcome in Advanced Stages of Mycosis Fungoides and Sézary Syndrome: effect of specific prognostic markers on survival and development of a prognostic model
.
J Clin Oncol
.
2015
;
33
(
32
):
3766
-
3773
.
6.
Kim
E
,
Hess
S
,
Richardson
S
, et al
.
Immunopathogenesis and therapy of cutaneous T cell lymphoma
.
J Clin Invest
.
2005
;
115
(
4
):
798
-
812
.
7.
Rubio Gonzalez
B
,
Zain
J
,
Rosen
S
,
Querfeld
C
.
Tumor microenvironment in mycosis fungoides and Sézary syndrome
.
Curr Opin Oncol
.
2016
;
28
(
1
):
88
-
96
.
8.
Fujii
K
.
New therapies and immunological findings in cutaneous T-cell lymphoma
.
Front Oncol
.
2018
;
8
:
198
.
9.
Krejsgaard
T
,
Lindahl
L
,
Mongan
N
, et al
.
Malignant inflammation in cutaneous T-cell lymphoma-a hostile takeover
.
Semin Immunopathol
.
2017
;
39
(
3
):
269
-
282
.
10.
Vowels
B
,
Lessin
S
,
Cassin
M
, et al
.
Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma
.
J Invest Dermatol
.
1994
;
103
(
5
):
669
-
673
.
11.
Guenova
E
,
Watanabe
R
,
Teague
J
, et al
.
TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma
.
Clin Cancer Res
.
2013
;
19
(
14
):
3755
-
3763
.
12.
Vieyra-Garcia
P
,
Crouch
J
,
O’Malley
J
, et al
.
Benign T cells drive clinical skin inflammation in cutaneous T cell lymphoma
.
JCI Insight
.
2019
;
4
(
1
):
124233
.
13.
Furudate
S
,
Fujimura
T
,
Kakizaki
A
, et al
.
The possible interaction between periostin expressed by cancer stroma and tumor-associated macrophages in developing mycosis fungoides
.
Exp Dermatol
.
2016
;
25
(
2
):
107
-
112
.
14.
Rabenhorst
A
,
Schlaak
M
,
Heukamp
L
, et al
.
Mast cells play a protumorigenic role in primary cutaneous lymphoma
.
Blood
.
2012
;
120
(
10
):
2042
-
2054
.
15.
Ionescu
M
,
Rivet
J
,
Daneshpouy
M
,
Briere
J
,
Morel
P
,
Janin
A
.
In situ eosinophil activation in 26 primary cutaneous T-cell lymphomas with blood eosinophilia
.
J Am Acad Dermatol
.
2005
;
52
(
1
):
32
-
39
.
16.
Kural
Y
,
Su
O
,
Onsun
N
,
Uras
A
.
Atopy, IgE and eosinophilic cationic protein concentration, specific IgE positivity, eosinophil count in cutaneous T cell lymphoma
.
Int J Dermatol
.
2010
;
49
(
4
):
390
-
395
.
17.
Wu
X
,
Schulte
B
,
Zhou
Y
, et al
.
Depletion of M2-like tumor-associated macrophages delays cutaneous T-cell lymphoma development in vivo
.
J Invest Dermatol
.
2014
;
134
(
11
):
2814
-
2822
.
18.
Axelrod
P
,
Lorber
B
,
Vonderheid
E
.
Infections complicating mycosis fungoides and Sézary syndrome
.
JAMA
.
1992
;
267
(
10
):
1354
-
1358
.
19.
Geskin
L
,
Viragova
S
,
Stolz
D
,
Fuschiotti
P
.
Interleukin-13 is overexpressed in cutaneous T-cell lymphoma cells and regulates their proliferation
.
Blood
.
2015
;
125
(
18
):
2798
-
2805
.
20.
Goenka
S
,
Kaplan
M
.
Transcriptional regulation by STAT6
.
Immunol Res
.
2011
;
50
(
1
):
87
-
96
.
21.
Nelms
K
,
Keegan
A
,
Zamorano
J
,
Ryan
J
,
Paul
W
.
The IL-4 receptor: signaling mechanisms and biologic functions
.
Annu Rev Immunol
.
1999
;
17
(
1
):
701
-
738
.
22.
Hershey
G
.
IL-13 receptors and signaling pathways: an evolving web
.
J Allergy Clin Immunol
.
2003
;
111
(
4
):
677
-
690, quiz 691
.
23.
Bruns
H
,
Kaplan
M
.
The role of constitutively active Stat6 in leukemia and lymphoma
.
Crit Rev Oncol Hematol
.
2006
;
57
(
3
):
245
-
253
.
24.
Ni
Z
,
Lou
W
,
Lee
S
, et al
.
Selective activation of members of the signal transducers and activators of transcription family in prostate carcinoma
.
J Urol
.
2002
;
167
(
4
):
1859
-
1862
.
25.
Skinnider
B
,
Elia
A
,
Gascoyne
R
, et al
.
Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma
.
Blood
.
2002
;
99
(
2
):
618
-
626
.
26.
Baus
D
,
Nonnenmacher
F
,
Jankowski
S
, et al
.
STAT6 and STAT1 are essential antagonistic regulators of cell survival in classical Hodgkin lymphoma cell line
.
Leukemia
.
2009
;
23
(
10
):
1885
-
1893
.
27.
Lu
X
,
Nechushtan
H
,
Ding
F
, et al
.
Distinct IL-4-induced gene expression, proliferation, and intracellular signaling in germinal center B-cell-like and activated B-cell-like diffuse large-cell lymphomas
.
Blood
.
2005
;
105
(
7
):
2924
-
2932
.
28.
Yildiz
M
,
Li
H
,
Bernard
D
, et al
.
Activating STAT6 mutations in follicular lymphoma
.
Blood
.
2015
;
125
(
4
):
668
-
679
.
29.
Wang
C
,
Zhu
C
,
Wei
F
, et al
.
Constitutive activation of interleukin-13/STAT6 contributes to Kaposi’s sarcoma-associated herpesvirus-related primary effusion lymphoma cell proliferation and survival
.
J Virol
.
2015
;
89
(
20
):
10416
-
10426
.
30.
Netchiporouk
E
,
Litvinov
I
,
Moreau
L
,
Gilbert
M
,
Sasseville
D
,
Duvic
M
.
Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression
.
Cell Cycle
.
2014
;
13
(
21
):
3331
-
3335
.
31.
Litvinov
I
,
Cordeiro
B
,
Fredholm
S
, et al
.
Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines
.
Cell Cycle
.
2014
;
13
(
18
):
2975
-
2982
.
32.
Vieyra-Garcia
P
,
Wei
T
,
Naym
D
, et al
.
STAT3/5-dependent IL9 overexpression contributes to neoplastic cell survival in mycosis fungoides
.
Clin Cancer Res
.
2016
;
22
(
13
):
3328
-
3339
.
33.
Sommer
V
,
Clemmensen
O
,
Nielsen
O
, et al
.
In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3
.
Leukemia
.
2004
;
18
(
7
):
1288
-
1295
.
34.
Cascio
S
,
Medsger
T
Jr.
,
Hawse
W
, et al
.
14-3-3z sequesters cytosolic T-bet, upregulating IL-13 levels in TC2 and CD8(+) lymphocytes from patients with scleroderma
.
J Allergy Clin Immunol
.
2018
;
142
(
1
):
109
-
119
.
35.
Gaydosik
A
,
Tabib
T
,
Geskin
L
, et al
.
Single-cell lymphocyte heterogeneity in advanced cutaneous T-cell lymphoma skin tumors
.
Clin Cancer Res
.
2019
;
25
(
14
):
4443
-
4454
.
36.
Chiba
Y
,
Todoroki
M
,
Nishida
Y
,
Tanabe
M
,
Misawa
M
.
A novel STAT6 inhibitor AS1517499 ameliorates antigen-induced bronchial hypercontractility in mice
.
Am J Respir Cell Mol Biol
.
2009
;
41
(
5
):
516
-
524
.
37.
Elo
L
,
Järvenpää
H
,
Tuomela
S
, et al
.
Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming
.
Immunity
.
2010
;
32
(
6
):
852
-
862
.
38.
Satija
R
,
Farrell
J
,
Gennert
D
,
Schier
A
,
Regev
A
.
Spatial reconstruction of single-cell gene expression data
.
Nat Biotechnol
.
2015
;
33
(
5
):
495
-
502
.
39.
Macosko
E
,
Basu
A
,
Satija
R
, et al
.
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
.
Cell
.
2015
;
161
(
5
):
1202
-
1214
.
40.
Yamaguchi
Y
,
Takihara
T
,
Chambers
R
,
Veraldi
K
,
Larregina
A
,
Feghali-Bostwick
C
.
A peptide derived from endostatin ameliorates organ fibrosis
.
Sci Transl Med
.
2012
;
4
(
136
):
136ra71
.
41.
Mathers
A
,
Janelsins
B
,
Rubin
J
, et al
.
Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses
.
J Immunol
.
2009
;
182
(
2
):
921
-
933
.
42.
Krämer
A
,
Green
J
,
Pollard
J
Jr.
,
Tugendreich
S
.
Causal analysis approaches in ingenuity pathway analysis
.
Bioinformatics
.
2014
;
30
(
4
):
523
-
530
.
43.
Masse
I
,
Barbollat-Boutrand
L
,
Kharbili
M
,
Berthier-Vergnes
O
,
Aubert
D
,
Lamartine
J
.
GATA3 inhibits proliferation and induces expression of both early and late differentiation markers in keratinocytes of the human epidermis
.
Arch Dermatol Res
.
2014
;
306
(
2
):
201
-
208
.
44.
Zeitvogel
J
,
Jokmin
N
,
Rieker
S
,
Klug
I
,
Brandenberger
C
,
Werfel
T
.
GATA3 regulates FLG and FLG2 expression in human primary keratinocytes
.
Sci Rep
.
2017
;
7
(
1
):
11847
.
45.
Zhang
Y
,
Wang
Y
,
Yu
R
, et al
.
Molecular markers of early-stage mycosis fungoides
.
J Invest Dermatol
.
2012
;
132
(
6
):
1698
-
1706
.
46.
Dulmage
B
,
Geskin
L
,
Guitart
J
,
Akilov
O
.
The biomarker landscape in mycosis fungoides and Sézary syndrome
.
Exp Dermatol
.
2017
;
26
(
8
):
668
-
676
.
47.
Whitfield
M
,
George
L
,
Grant
G
,
Perou
C
.
Common markers of proliferation
.
Nat Rev Cancer
.
2006
;
6
(
2
):
99
-
106
.
48.
Sica
A
,
Bronte
V
.
Altered macrophage differentiation and immune dysfunction in tumor development
.
J Clin Invest
.
2007
;
117
(
5
):
1155
-
1166
.
49.
Sica
A
,
Schioppa
T
,
Mantovani
A
,
Allavena
P
.
Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy
.
Eur J Cancer
.
2006
;
42
(
6
):
717
-
727
.
50.
Qian
B
,
Pollard
J
.
Macrophage diversity enhances tumor progression and metastasis
.
Cell
.
2010
;
141
(
1
):
39
-
51
.
51.
Komohara
Y
,
Jinushi
M
,
Takeya
M
.
Clinical significance of macrophage heterogeneity in human malignant tumors
.
Cancer Sci
.
2014
;
105
(
1
):
1
-
8
.
52.
Günther
C
,
Zimmermann
N
,
Berndt
N
, et al
.
Up-regulation of the chemokine CCL18 by macrophages is a potential immunomodulatory pathway in cutaneous T-cell lymphoma
.
Am J Pathol
.
2011
;
179
(
3
):
1434
-
1442
.
53.
Sugaya
M
,
Miyagaki
T
,
Ohmatsu
H
, et al
.
Association of the numbers of CD163(+) cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma
.
J Dermatol Sci
.
2012
;
68
(
1
):
45
-
51
.
54.
Assaf
C
,
Hwang
S
.
Mac attack: macrophages as key drivers of cutaneous T-cell lymphoma pathogenesis
.
Exp Dermatol
.
2016
;
25
(
2
):
105
-
106
.
55.
Guiter
C
,
Dusanter-Fourt
I
,
Copie-Bergman
C
, et al
.
Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma
.
Blood
.
2004
;
104
(
2
):
543
-
549
.
56.
Mottok
A
,
Renné
C
,
Willenbrock
K
,
Hansmann
M
,
Bräuninger
A
.
Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6
.
Blood
.
2007
;
110
(
9
):
3387
-
3390
.
57.
Vaqué
J
,
Gómez-López
G
,
Monsálvez
V
, et al
.
PLCG1 mutations in cutaneous T-cell lymphomas
.
Blood
.
2014
;
123
(
13
):
2034
-
2043
.
58.
McGirt
L
,
Jia
P
,
Baerenwald
D
, et al
.
Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides
.
Blood
.
2015
;
126
(
4
):
508
-
519
.
59.
Horwitz
S
,
Feldman
T
,
Hess
B
, et al
.
A phase 2 study of the dual SYK/JAK inhibitor cerdulatinib demonstrates good tolerability and clinical response in relapsed/refractory peripheral T-cell lymphoma and cutaneous T-cell lymphoma [abstract]
.
Blood
.
2019
;
134
(
suppl 1
). Abstract
466
.
60.
Moskowitz
A
,
Ghione
P
,
Jacobsen
E
, et al
.
Final results of a phase II biomarker-driven study of ruxolitinib in relapsed and refractory T-cell lymphoma [abstract]
.
Blood
.
2019
;
134
(
suppl 1
). Abstract
4019
.
61.
Bertoli
C
,
Skotheim
J
,
de Bruin
R
.
Control of cell cycle transcription during G1 and S phases
.
Nat Rev Mol Cell Biol
.
2013
;
14
(
8
):
518
-
528
.
62.
Hochegger
H
,
Takeda
S
,
Hunt
T
.
Cyclin-dependent kinases and cell-cycle transitions: does one fit all?
Nat Rev Mol Cell Biol
.
2008
;
9
(
11
):
910
-
916
.
63.
Chen
H
,
Tsai
S
,
Leone
G
.
Emerging roles of E2Fs in cancer: an exit from cell cycle control
.
Nat Rev Cancer
.
2009
;
9
(
11
):
785
-
797
.
64.
McDonald
C
,
Vanscoy
S
,
Hearing
P
,
Reich
N
.
Induction of genes involved in cell cycle progression by interleukin-4
.
J Interferon Cytokine Res
.
2004
;
24
(
12
):
729
-
738
.
65.
DeNardo
D
,
Ruffell
B
.
Macrophages as regulators of tumour immunity and immunotherapy
.
Nat Rev Immunol
.
2019
;
19
(
6
):
369
-
382
.
66.
Mantovani
A
,
Marchesi
F
,
Malesci
A
,
Laghi
L
,
Allavena
P
.
Tumour-associated macrophages as treatment targets in oncology
.
Nat Rev Clin Oncol
.
2017
;
14
(
7
):
399
-
416
.
67.
Ferenczi
K
,
Fuhlbrigge
R
,
Pinkus
J
,
Pinkus
G
,
Kupper
T
.
Increased CCR4 expression in cutaneous T cell lymphoma
.
J Invest Dermatol
.
2002
;
119
(
6
):
1405
-
1410
.
68.
Duvic
M
,
Pinter-Brown
L
,
Foss
F
, et al
.
Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma
.
Blood
.
2015
;
125
(
12
):
1883
-
1889
.
69.
Cassetta
L
,
Fragkogianni
S
,
Sims
A
, et al
.
Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets
.
Cancer Cell
.
2019
;
35
(
4
):
588
-
602
.
70.
Farmaki
E
,
Chatzistamou
I
,
Kaza
V
,
Kiaris
H
.
A CCL8 gradient drives breast cancer cell dissemination
.
Oncogene
.
2016
;
35
(
49
):
6309
-
6318
.
71.
Barbai
T
,
Fejős
Z
,
Puskas
L
,
Tímár
J
,
Rásó
E
.
The importance of microenvironment: the role of CCL8 in metastasis formation of melanoma
.
Oncotarget
.
2015
;
6
(
30
):
29111
-
29128
.
72.
de Oliveira
C
,
Gasparoto
T
,
Pinheiro
C
, et al
.
CCR5-dependent homing of T regulatory cells to the tumor microenvironment contributes to skin squamous cell carcinoma development
.
Mol Cancer Ther
.
2017
;
16
(
12
):
2871
-
2880
.
73.
Loyher
P
,
Rochefort
J
,
Baudesson de Chanville
C
, et al
.
CCR2 influences T regulatory cell migration to tumors and serves as a biomarker of cyclophosphamide sensitivity
.
Cancer Res
.
2016
;
76
(
22
):
6483
-
6494
.
74.
Halvorsen
E
,
Hamilton
M
,
Young
A
, et al
.
Maraviroc decreases CCL8-mediated migration of CCR5(+) regulatory T cells and reduces metastatic tumor growth in the lungs
.
OncoImmunology
.
2016
;
5
(
6
):
e1150398
.
75.
Mondini
M
,
Loyher
P
,
Hamon
P
, et al
.
CCR2-dependent recruitment of Tregs and monocytes following radiotherapy is associated with TNFα-mediated resistance
.
Cancer Immunol Res
.
2019
;
7
(
3
):
376
-
387
.
76.
Shono
Y
,
Suga
H
,
Kamijo
H
, et al
.
Expression of CCR3 and CCR4 suggests a poor prognosis in mycosis fungoides and Sézary syndrome
.
Acta Derm Venereol
.
2019
;
99
(
9
):
809
-
812
.
77.
Kleinhans
M
,
Tun-Kyi
A
,
Gilliet
M
, et al
.
Functional expression of the eotaxin receptor CCR3 in CD30+ cutaneous T-cell lymphoma
.
Blood
.
2003
;
101
(
4
):
1487
-
1493
.
78.
Yang
L
,
Pang
Y
,
Moses
H
.
TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression
.
Trends Immunol
.
2010
;
31
(
6
):
220
-
227
.
79.
Wilcox
R
,
Feldman
A
,
Wada
D
, et al
.
B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders
.
Blood
.
2009
;
114
(
10
):
2149
-
2158
.
80.
Vidak
E
,
Javoršek
U
,
Vizovišek
M
,
Turk
B
.
Cysteine cathepsins and their extracellular roles: shaping the microenvironment
.
Cells
.
2019
;
8
(
3
):
E264
.
81.
Gocheva
V
,
Wang
H
,
Gadea
B
, et al
.
IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion
.
Genes Dev
.
2010
;
24
(
3
):
241
-
255
.
82.
Yan
D
,
Wang
H
,
Bowman
R
,
Joyce
J
.
STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1α activation
.
Cell Rep
.
2016
;
16
(
11
):
2914
-
2927
.
83.
Wilkinson
R
,
Young
A
,
Burden
R
,
Williams
R
,
Scott
C
.
A bioavailable cathepsin S nitrile inhibitor abrogates tumor development
.
Mol Cancer
.
2016
;
15
(
1
):
29
.
84.
Bulla
R
,
Tripodo
C
,
Rami
D
, et al
.
C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation
.
Nat Commun
.
2016
;
7
(
1
):
10346
.
You do not currently have access to this content.

Sign in via your Institution

Sign In