Key Points

  • Mutant ASXL1 and HHEX promote myeloid leukemogenesis via upregulating the expression of MYB and ETV5.

  • Inhibition of the HHEX-MYB/ETV5 axis would be a promising therapeutic approach for myeloid malignancies harboring ASXL1 mutations.

Abstract

Additional sex combs-like 1 (ASXL1), an epigenetic modulator, is frequently mutated in myeloid neoplasms. Recent analyses of mutant ASXL1 conditional knockin (ASXL1-MT-KI) mice suggested that ASXL1-MT alone is insufficient for myeloid transformation. In our previous study, we used retrovirus-mediated insertional mutagenesis, which exhibited the susceptibility of ASXL1-MT-KI hematopoietic cells to transform into myeloid leukemia cells. In this screening, we identified the hematopoietically expressed homeobox (HHEX) gene as one of the common retrovirus integration sites. In this study, we investigated the potential cooperation between ASXL1-MT and HHEX in myeloid leukemogenesis. Expression of HHEX enhanced proliferation of ASXL1-MT–expressing HSPCs by inhibiting apoptosis and blocking differentiation, whereas it showed only modest effect in normal HSPCs. Moreover, ASXL1-MT and HHEX accelerated the development of RUNX1-ETO9a and FLT3-ITD leukemia. Conversely, HHEX depletion profoundly attenuated the colony-forming activity and leukemogenicity of ASXL1-MT–expressing leukemia cells. Mechanistically, we identified MYB and ETV5 as downstream targets for ASXL1-MT and HHEX by using transcriptome and chromatin immunoprecipitation–next-generation sequencing analyses. Moreover, we found that expression of ASXL1-MT enhanced the binding of HHEX to the promoter loci of MYB or ETV5 via reducing H2AK119ub. Depletion of MYB or ETV5 induced apoptosis or differentiation in ASXL1-MT–expressing leukemia cells, respectively. In addition, ectopic expression of MYB or ETV5 reversed the reduced colony-forming activity of HHEX-depleted ASXL1-MT–expressing leukemia cells. These findings indicate that the HHEX-MYB/ETV5 axis promotes myeloid transformation in ASXL1-mutated preleukemia cells.

REFERENCES

1.
Metzeler
KH
,
Becker
H
,
Maharry
K
, et al
.
ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN favorable genetic category
.
Blood
.
2011
;
118
(
26
):
6920
-
6929
.
2.
Thol
F
,
Friesen
I
,
Damm
F
, et al
.
Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes
.
J Clin Oncol
.
2011
;
29
(
18
):
2499
-
2506
.
3.
Gelsi-Boyer
V
,
Trouplin
V
,
Roquain
J
, et al
.
ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia
.
Br J Haematol
.
2010
;
151
(
4
):
365
-
375
.
4.
Inoue
D
,
Matsumoto
M
,
Nagase
R
, et al
.
Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels
.
Exp Hematol
.
2016
;
44
(
3
):
172
-
176
.
5.
Asada
S
,
Goyama
S
,
Inoue
D
, et al
.
Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis
.
Nat Commun
.
2018
;
9
(
1
):
2733
.
6.
Abdel-Wahab
O
,
Adli
M
,
LaFave
LM
, et al
.
ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression
.
Cancer Cell
.
2012
;
22
(
2
):
180
-
193
.
7.
Asada
S
,
Kitamura
T
.
Aberrant histone modifications induced by mutant ASXL1 in myeloid neoplasms
.
Int J Hematol
.
2019
;
110
(
2
):
179
-
186
.
8.
Inoue
D
,
Kitaura
J
,
Togami
K
, et al
.
Myelodysplastic syndromes are induced by histone methylation–altering ASXL1 mutations
.
J Clin Invest
.
2013
;
123
(
11
):
4627
-
4640
.
9.
Balasubramani
A
,
Larjo
A
,
Bassein
JA
, et al
.
Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex
.
Nat Commun
.
2015
;
6
(
1
):
7307
.
10.
Asada
S
,
Fujino
T
,
Goyama
S
,
Kitamura
T
.
The role of ASXL1 in hematopoiesis and myeloid malignancies
.
Cell Mol Life Sci
.
2019
;
76
(
13
):
2511
-
2523
.
11.
Yang
H
,
Kurtenbach
S
,
Guo
Y
, et al
.
Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies
.
Blood
.
2018
;
131
(
3
):
328
-
341
.
12.
Nagase
R
,
Inoue
D
,
Pastore
A
, et al
.
Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation
.
J Exp Med
.
2018
;
215
(
6
):
1729
-
1747
.
13.
Bedford
FK
,
Ashworth
A
,
Enver
T
,
Wiedemann
LM
.
HEX: a novel homeobox gene expressed during haematopoiesis and conserved between mouse and human
.
Nucleic Acids Res
.
1993
;
21
(
5
):
1245
-
1249
.
14.
Swingler
TE
,
Bess
KL
,
Yao
J
,
Stifani
S
,
Jayaraman
PS
.
The proline-rich homeodomain protein recruits members of the groucho/transducin-like enhancer of split protein family to co-repress transcription in hematopoietic cells
.
J Biol Chem
.
2004
;
279
(
33
):
34938
-
34947
.
15.
Soufi
A
,
Jayaraman
PS
.
PRH/Hex: an oligomeric transcription factor and multifunctional regulator of cell fate
.
Biochem J
.
2008
;
412
(
3
):
399
-
413
.
16.
Hallaq
H
,
Pinter
E
,
Enciso
J
, et al
.
A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels
.
Development
.
2004
;
131
(
20
):
5197
-
5209
.
17.
Gauvrit
S
,
Villasenor
A
,
Strilic
B
, et al
.
HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development
.
Nat Commun
.
2018
;
9
(
1
):
2704
.
18.
Paz
H
,
Lynch
MR
,
Bogue
CW
,
Gasson
JC
.
The homeobox gene Hhex regulates the earliest stages of definitive hematopoiesis
.
Blood
.
2010
;
116
(
8
):
1254
-
1262
.
19.
Shields
BJ
,
Jackson
JT
,
Metcalf
D
, et al
.
Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of Cdkn2a
.
Genes Dev
.
2016
;
30
(
1
):
78
-
91
.
20.
Jackson
JT
,
Ng
AP
,
Shields
BJ
,
Haupt
S
,
Haupt
Y
,
McCormack
MP
.
Hhex induces promyelocyte self-renewal and cooperates with growth factor independence to cause myeloid leukemia in mice
.
Blood Adv
.
2018
;
2
(
4
):
347
-
360
.
21.
Jackson
JT
,
Nasa
C
,
Shi
W
, et al
.
A crucial role for the homeodomain transcription factor Hhex in lymphopoiesis
.
Blood
.
2015
;
125
(
5
):
803
-
814
.
22.
Jackson
JT
,
Shields
BJ
,
Shi
W
, et al
.
Hhex regulates hematopoietic stem cell self-renewal and stress hematopoiesis via repression of Cdkn2a
.
Stem Cells
.
2017
;
35
(
8
):
1948
-
1957
.
23.
Goodings
C
,
Smith
E
,
Mathias
E
, et al
.
Hhex is required at multiple stages of adult hematopoietic stem and progenitor cell differentiation
.
Stem Cells
.
2015
;
33
(
8
):
2628
-
2641
.
24.
Jang
SW
,
Hwang
SS
,
Kim
HS
, et al
.
Homeobox protein Hhex negatively regulates Treg cells by inhibiting Foxp3 expression and function
.
Proc Natl Acad Sci USA
.
2019
;
116
(
51
):
25790
-
25799
.
25.
Tyner
JW
,
Tognon
CE
,
Bottomly
D
, et al
.
Functional genomic landscape of acute myeloid leukaemia
.
Nature
.
2018
;
562
(
7728
):
526
-
531
.
26.
Micol
JB
,
Duployez
N
,
Boissel
N
, et al
.
Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations
.
Blood
.
2014
;
124
(
9
):
1445
-
1449
.
27.
Goyama
S
,
Schibler
J
,
Gasilina
A
, et al
.
UBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETO
.
Leukemia
.
2016
;
30
(
3
):
728
-
739
.
28.
Mulloy
JC
,
Cammenga
J
,
MacKenzie
KL
,
Berguido
FJ
,
Moore
MA
,
Nimer
SD
.
The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells
.
Blood
.
2002
;
99
(
1
):
15
-
23
.
29.
Yan
M
,
Kanbe
E
,
Peterson
LF
, et al
.
A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis
.
Nat Med
.
2006
;
12
(
8
):
945
-
949
.
30.
Behrens
K
,
Maul
K
,
Tekin
N
, et al
.
RUNX1 cooperates with FLT3-ITD to induce leukemia
.
J Exp Med
.
2017
;
214
(
3
):
737
-
752
.
31.
Inoue
D
,
Kitaura
J
,
Matsui
H
, et al
.
SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS
.
Leukemia
.
2015
;
29
(
4
):
847
-
857
.
32.
Saika
M
,
Inoue
D
,
Nagase
R
, et al
.
ASXL1 and SETBP1 mutations promote leukaemogenesis by repressing TGFβ pathway genes through histone deacetylation
.
Sci Rep
.
2018
;
8
(
1
):
15873
.
33.
Mootha
VK
,
Lindgren
CM
,
Eriksson
KF
, et al
.
PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
.
Nat Genet
.
2003
;
34
(
3
):
267
-
273
.
34.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci USA
.
2005
;
102
(
43
):
15545
-
15550
.
35.
Ley
TJ
,
Miller
C
, et al;
Cancer Genome Atlas Research Network
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
36.
Chen
JY
,
Miyanishi
M
,
Wang
SK
, et al
.
Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche
.
Nature
.
2016
;
530
(
7589
):
223
-
227
.
37.
Ingenhag
D
,
Reister
S
,
Auer
F
, et al
.
The homeobox transcription factor HB9 induces senescence and blocks differentiation in hematopoietic stem and progenitor cells
.
Haematologica
.
2019
;
104
(
1
):
35
-
46
.
38.
Gao
C
,
Huang
W
,
Gao
Y
, et al
.
Zebrafish hhex-null mutant develops an intrahepatic intestinal tube due to de-repression of cdx1b and pdx1
.
J Mol Cell Biol
.
2019
;
11
(
6
):
448
-
462
.
39.
Campagne
A
,
Lee
MK
,
Zielinski
D
, et al
.
BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation
.
Nat Commun
.
2019
;
10
(
1
):
348
.
40.
Ramsay
RG
,
Gonda
TJ
.
MYB function in normal and cancer cells
.
Nat Rev Cancer
.
2008
;
8
(
7
):
523
-
534
.
41.
Uttarkar
S
,
Frampton
J
,
Klempnauer
KH
.
Targeting the transcription factor Myb by small-molecule inhibitors
.
Exp Hematol
.
2017
;
47
:
31
-
35
.
42.
Ramaswamy
K
,
Forbes
L
,
Minuesa
G
, et al
.
Peptidomimetic blockade of MYB in acute myeloid leukemia
.
Nat Commun
.
2018
;
9
(
1
):
110
.
43.
Nayak
RC
,
Hegde
S
,
Althoff
MJ
, et al
.
The signaling axis atypical protein kinase C λ/ι-Satb2 mediates leukemic transformation of B-cell progenitors
.
Nat Commun
.
2019
;
10
(
1
):
46
.
44.
Shojaee
S
,
Caeser
R
,
Buchner
M
, et al
.
Erk negative feedback control enables pre-B cell transformation and represents a therapeutic target in acute lymphoblastic leukemia
.
Cancer Cell
.
2015
;
28
(
1
):
114
-
128
.
You do not currently have access to this content.

Sign in via your Institution

Sign In