Key Points

  • Human pathogenic immunoglobulin LC fully reproduces LCDD in a transgenic mouse, including glomerulosclerosis and end-stage renal failure.

  • In addition to its kidney toxicity, LCDD LC induces endoplasmic reticulum stress and sensitizes PCs to proteasome inhibitors.

Abstract

Light chain (LC) deposition disease (LCDD) is a rare disorder characterized by glomerular and peritubular amorphous deposits of a monoclonal immunoglobulin LC, leading to nodular glomerulosclerosis and nephrotic syndrome. We developed a transgenic model using site-directed insertion of the variable domain of a pathogenic human LC gene into the mouse immunoglobulin κ locus, ensuring its production by all plasma cells (PCs). High free LC levels were achieved after backcrossing with mice presenting increased PC differentiation and no immunoglobulin heavy chain production. Our mouse model recapitulates the characteristic features of LCDD, including progressive glomerulosclerosis, nephrotic-range proteinuria, and finally kidney failure. The variable domain of the LC bears alone the structural properties involved in its pathogenicity. RNA sequencing conducted on PCs demonstrated that LCDD LC induces endoplasmic reticulum stress, likely accounting for the high efficiency of proteasome inhibitor–based therapy. Accordingly, reduction of circulating pathogenic LC was efficiently achieved and not only preserved renal function but also partially reversed kidney lesions. Finally, transcriptome analysis of presclerotic glomeruli revealed that proliferation and extracellular matrix remodeling represented the first steps of glomerulosclerosis, paving the way for future therapeutic strategies in LCDD and other kidney diseases featuring diffuse glomerulosclerosis, particularly diabetic nephropathy.

REFERENCES

1.
Leung
N
,
Bridoux
F
,
Hutchison
CA
, et al;
International Kidney and Monoclonal Gammopathy Research Group
.
Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant
.
Blood
.
2012
;
120
(
22
):
4292
-
4295
.
2.
Bridoux
F
,
Leung
N
,
Hutchison
CA
, et al;
International Kidney and Monoclonal Gammopathy Research Group
.
Diagnosis of monoclonal gammopathy of renal significance
.
Kidney Int
.
2015
;
87
(
4
):
698
-
711
.
3.
Preud’homme
JL
,
Aucouturier
P
,
Touchard
G
, et al
.
Monoclonal immunoglobulin deposition disease (Randall type). Relationship with structural abnormalities of immunoglobulin chains
.
Kidney Int
.
1994
;
46
(
4
):
965
-
972
.
4.
Preud’homme
JL
,
Aucouturier
P
,
Touchard
G
, et al
.
Monoclonal immunoglobulin deposition disease: a review of immunoglobulin chain alterations
.
Int J Immunopharmacol
.
1994
;
16
(
5-6
):
425
-
431
.
5.
Bridoux
F
,
Javaugue
V
,
Bender
S
, et al
.
Unravelling the immunopathological mechanisms of heavy chain deposition disease with implications for clinical management
.
Kidney Int
.
2017
;
91
(
2
):
423
-
434
.
6.
Kaplan
B
,
Livneh
A
,
Gallo
G
.
Charge differences between in vivo deposits in immunoglobulin light chain amyloidosis and non-amyloid light chain deposition disease
.
Br J Haematol
.
2007
;
136
(
5
):
723
-
728
.
7.
Joly
F
,
Cohen
C
,
Javaugue
V
, et al
.
Randall-type monoclonal immunoglobulin deposition disease: novel insights from a nationwide cohort study
.
Blood
.
2019
;
133
(
6
):
576
-
587
.
8.
Russell
WJ
,
Cardelli
J
,
Harris
E
,
Baier
RJ
,
Herrera
GA
.
Monoclonal light chain–mesangial cell interactions: early signaling events and subsequent pathologic effects
.
Lab Invest
.
2001
;
81
(
5
):
689
-
703
.
9.
Keeling
J
,
Herrera
GA
.
Matrix metalloproteinases and mesangial remodeling in light chain-related glomerular damage
.
Kidney Int
.
2005
;
68
(
4
):
1590
-
1603
.
10.
Keeling
J
,
Herrera
GA
.
An in vitro model of light chain deposition disease
.
Kidney Int
.
2009
;
75
(
6
):
634
-
645
.
11.
Herrera
GA
,
Turbat-Herrera
EA
,
Teng
J
.
Animal models of light chain deposition disease provide a better understanding of nodular glomerulosclerosis
.
Nephron
.
2016
;
132
(
2
):
119
-
136
.
12.
Yang
CW
,
Hattori
M
,
Vlassara
H
, et al
.
Overexpression of transforming growth factor-beta 1 mRNA is associated with up-regulation of glomerular tenascin and laminin gene expression in nonobese diabetic mice
.
J Am Soc Nephrol
.
1995
;
5
(
8
):
1610
-
1617
.
13.
Bonaud
A
,
Bender
S
,
Touchard
G
, et al
.
A mouse model recapitulating human monoclonal heavy chain deposition disease evidences the relevance of proteasome inhibitor therapy
.
Blood
.
2015
;
126
(
6
):
757
-
765
.
14.
Sirac
C
,
Herrera
GA
,
Sanders
PW
, et al
.
Animal models of monoclonal immunoglobulin-related renal diseases
.
Nat Rev Nephrol
.
2018
;
14
(
4
):
246
-
264
.
15.
Sirac
C
,
Bridoux
F
,
Carrion
C
, et al
.
Role of the monoclonal kappa chain V domain and reversibility of renal damage in a transgenic model of acquired Fanconi syndrome
.
Blood
.
2006
;
108
(
2
):
536
-
543
.
16.
Casola
S
,
Otipoby
KL
,
Alimzhanov
M
, et al
.
B cell receptor signal strength determines B cell fate
.
Nat Immunol
.
2004
;
5
(
3
):
317
-
327
.
17.
Neubert
K
,
Meister
S
,
Moser
K
, et al
.
The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis
.
Nat Med
.
2008
;
14
(
7
):
748
-
755
.
18.
Takemoto
M
,
Asker
N
,
Gerhardt
H
, et al
.
A new method for large scale isolation of kidney glomeruli from mice
.
Am J Pathol
.
2002
;
161
(
3
):
799
-
805
.
19.
Cohen
C
,
Royer
B
,
Javaugue
V
, et al
.
Bortezomib produces high hematological response rates with prolonged renal survival in monoclonal immunoglobulin deposition disease
.
Kidney Int
.
2015
;
88
(
5
):
1135
-
1143
.
20.
Khamlichi
AA
,
Rocca
A
,
Touchard
G
,
Aucouturier
P
,
Preud’homme
JL
,
Cogné
M
.
Role of light chain variable region in myeloma with light chain deposition disease: evidence from an experimental model
.
Blood
.
1995
;
86
(
10
):
3655
-
3659
.
21.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci USA
.
2005
;
102
(
43
):
15545
-
15550
.
22.
Liberzon
A
,
Birger
C
,
Thorvaldsdóttir
H
,
Ghandi
M
,
Mesirov
JP
,
Tamayo
P
.
The Molecular Signatures Database (MSigDB) hallmark gene set collection
.
Cell Syst
.
2015
;
1
(
6
):
417
-
425
.
23.
Gupta
S
,
Clarkson
MR
,
Duggan
J
,
Brady
HR
.
Connective tissue growth factor: potential role in glomerulosclerosis and tubulointerstitial fibrosis
.
Kidney Int
.
2000
;
58
(
4
):
1389
-
1399
.
24.
Oliva
L
,
Orfanelli
U
,
Resnati
M
, et al
.
The amyloidogenic light chain is a stressor that sensitizes plasma cells to proteasome inhibitor toxicity
.
Blood
.
2017
;
129
(
15
):
2132
-
2142
.
25.
Tellier
J
,
Shi
W
,
Minnich
M
, et al
.
Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response
.
Nat Immunol
.
2016
;
17
(
3
):
323
-
330
.
26.
Zheng
F
,
Striker
GE
,
Esposito
C
,
Lupia
E
,
Striker
LJ
.
Strain differences rather than hyperglycemia determine the severity of glomerulosclerosis in mice
.
Kidney Int
.
1998
;
54
(
6
):
1999
-
2007
.
27.
Ma
L-J
,
Fogo
AB
.
Model of robust induction of glomerulosclerosis in mice: importance of genetic background
.
Kidney Int
.
2003
;
64
(
1
):
350
-
355
.
28.
Qi
Z
,
Fujita
H
,
Jin
J
, et al
.
Characterization of susceptibility of inbred mouse strains to diabetic nephropathy
.
Diabetes
.
2005
;
54
(
9
):
2628
-
2637
.
29.
Sirac
C
,
Bender
S
,
Jaccard
A
, et al
.
Strategies to model AL amyloidosis in mice [published correction appears in Amyloid. 2011;18(suppl 1):47]
.
Amyloid
.
2011
;
18
(
suppl 1
):
45
-
47
.
30.
Lechouane
F
,
Bonaud
A
,
Delpy
L
, et al
.
B-cell receptor signal strength influences terminal differentiation
.
Eur J Immunol
.
2013
;
43
(
3
):
619
-
628
.
31.
Decourt
C
,
Rocca
A
,
Bridoux
F
, et al
.
Mutational analysis in murine models for myeloma-associated Fanconi’s syndrome or cast myeloma nephropathy
.
Blood
.
1999
;
94
(
10
):
3559
-
3566
.
32.
Brosius
FC
III
,
Alpers
CE
,
Bottinger
EP
, et al;
Animal Models of Diabetic Complications Consortium
.
Mouse models of diabetic nephropathy
.
J Am Soc Nephrol
.
2009
;
20
(
12
):
2503
-
2512
.
33.
Chen
S
,
Jim
B
,
Ziyadeh
FN
.
Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up
.
Semin Nephrol
.
2003
;
23
(
6
):
532
-
543
.
34.
Hu
C
,
Sun
L
,
Xiao
L
, et al
.
Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy
.
Curr Med Chem
.
2015
;
22
(
24
):
2858
-
2870
.
35.
Zhu
L
,
Herrera
GA
,
Murphy-Ullrich
JE
,
Huang
ZQ
,
Sanders
PW
.
Pathogenesis of glomerulosclerosis in light chain deposition disease. Role for transforming growth factor-beta
.
Am J Pathol
.
1995
;
147
(
2
):
375
-
385
.
36.
Fu
H
,
Tian
Y
,
Zhou
L
, et al
.
Tenascin-C is a major component of the fibrogenic niche in kidney fibrosis
.
J Am Soc Nephrol
.
2017
;
28
(
3
):
785
-
801
.
37.
Truong
LD
,
Pindur
J
,
Barrios
R
, et al
.
Tenascin is an important component of the glomerular extracellular matrix in normal and pathologic conditions
.
Kidney Int
.
1994
;
45
(
1
):
201
-
210
.
38.
Sonnylal
S
,
Shi-Wen
X
,
Leoni
P
, et al
.
Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis
.
Arthritis Rheum
.
2010
;
62
(
5
):
1523
-
1532
.
39.
Kastritis
E
,
Wechalekar
AD
,
Dimopoulos
MA
, et al
.
Bortezomib with or without dexamethasone in primary systemic (light chain) amyloidosis
.
J Clin Oncol
.
2010
;
28
(
6
):
1031
-
1037
.
40.
Jaccard
A
,
Comenzo
RL
,
Hari
P
, et al
.
Efficacy of bortezomib, cyclophosphamide and dexamethasone in treatment-naïve patients with high-risk cardiac AL amyloidosis (Mayo Clinic stage III)
.
Haematologica
.
2014
;
99
(
9
):
1479
-
1485
.
41.
Reece
DE
,
Hegenbart
U
,
Sanchorawala
V
, et al
.
Long-term follow-up from a phase 1/2 study of single-agent bortezomib in relapsed systemic AL amyloidosis
.
Blood
.
2014
;
124
(
16
):
2498
-
2506
.
42.
Patel
K
,
Dillon
JJ
,
Leung
N
, et al
.
Use of bortezomib in heavy-chain deposition disease: a report of 3 cases
.
Am J Kidney Dis
.
2014
;
64
(
1
):
123
-
127
.
43.
Fioretto
P
,
Steffes
MW
,
Sutherland
DE
,
Goetz
FC
,
Mauer
M
.
Reversal of lesions of diabetic nephropathy after pancreas transplantation
.
N Engl J Med
.
1998
;
339
(
2
):
69
-
75
.
44.
Yang
H-C
,
Fogo
AB
.
Mechanisms of disease reversal in focal and segmental glomerulosclerosis
.
Adv Chronic Kidney Dis
.
2014
;
21
(
5
):
442
-
447
.
45.
Pichaiwong
W
,
Hudkins
KL
,
Wietecha
T
, et al
.
Reversibility of structural and functional damage in a model of advanced diabetic nephropathy
.
J Am Soc Nephrol
.
2013
;
24
(
7
):
1088
-
1102
.
46.
Conway
BR
,
Betz
B
,
Sheldrake
TA
, et al
.
Tight blood glycaemic and blood pressure control in experimental diabetic nephropathy reduces extracellular matrix production without regression of fibrosis
.
Nephrology (Carlton)
.
2014
;
19
(
12
):
802
-
813
.
47.
Aldigier
JC
,
Kanjanbuch
T
,
Ma
L-J
,
Brown
NJ
,
Fogo
AB
.
Regression of existing glomerulosclerosis by inhibition of aldosterone
.
J Am Soc Nephrol
.
2005
;
16
(
11
):
3306
-
3314
.
48.
Kunter
U
,
Rong
S
,
Djuric
Z
, et al
.
Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis
.
J Am Soc Nephrol
.
2006
;
17
(
8
):
2202
-
2212
.
49.
Lv
S
,
Liu
G
,
Sun
A
, et al
.
Mesenchymal stem cells ameliorate diabetic glomerular fibrosis in vivo and in vitro by inhibiting TGF-β signalling via secretion of bone morphogenetic protein 7
.
Diab Vasc Dis Res
.
2014
;
11
(
4
):
251
-
261
.
50.
Herrera
GA
,
Teng
J
,
Zeng
C
, et al
.
Phenotypic plasticity of mesenchymal stem cells is crucial for mesangial repair in a model of immunoglobulin light chain-associated mesangial damage
.
Ultrastruct Pathol
.
2018
;
42
(
3
):
262
-
288
.
51.
Kastritis
E
,
Migkou
M
,
Gavriatopoulou
M
,
Zirogiannis
P
,
Hadjikonstantinou
V
,
Dimopoulos
MA
.
Treatment of light chain deposition disease with bortezomib and dexamethasone
.
Haematologica
.
2009
;
94
(
2
):
300
-
302
.
52.
Zhou
P
,
Ma
X
,
Iyer
L
,
Chaulagain
C
,
Comenzo
RL
.
One siRNA pool targeting the λ constant region stops λ light-chain production and causes terminal endoplasmic reticulum stress
.
Blood
.
2014
;
123
(
22
):
3440
-
3451
.
53.
Srour
N
,
Chemin
G
,
Tinguely
A
, et al
.
A plasma cell differentiation quality control ablates B cell clones with biallelic Ig rearrangements and truncated Ig production
.
J Exp Med
.
2016
;
213
(
1
):
109
-
122
.
54.
Betz
B
,
Conway
BR
.
An update on the use of animal models in diabetic nephropathy research
.
Curr Diab Rep
.
2016
;
16
(
2
):
18
.
You do not currently have access to this content.

Sign in via your Institution

Sign In