Key Points

  • Aged erythrocytes interact with the extracellular matrix of the spleen, resulting in hemolysis and ghost formation.

  • Ghost formation enables recognition and phagocytosis of senescent erythrocytes by RPMs.

Abstract

Red pulp macrophages (RPMs) of the spleen mediate turnover of billions of senescent erythrocytes per day. However, the molecular mechanisms involved in sequestration of senescent erythrocytes, their recognition, and their subsequent degradation by RPMs remain unclear. In this study, we provide evidence that the splenic environment is of substantial importance in facilitating erythrocyte turnover through induction of hemolysis. Upon isolating human spleen RPMs, we noted a substantial lack of macrophages that were in the process of phagocytosing intact erythrocytes. Detailed characterization of erythrocyte and macrophage subpopulations from human spleen tissue led to the identification of erythrocytes that are devoid of hemoglobin, so-called erythrocyte ghosts. By using in vivo imaging and transfusion experiments, we further confirmed that senescent erythrocytes that are retained in the spleen are subject to hemolysis. In addition, we showed that erythrocyte adhesion molecules, which are specifically activated on aged erythrocytes, cause senescent erythrocytes to interact with extracellular matrix proteins that are exposed within the splenic architecture. Such adhesion molecule–driven retention of senescent erythrocytes under low shear conditions was found to result in steady shrinkage of the cell and ultimately resulted in hemolysis. In contrast to intact senescent erythrocytes, the remnant erythrocyte ghost shells were prone to recognition and breakdown by RPMs. These data identify hemolysis as a key event in the turnover of senescent erythrocytes, which alters our current understanding of how erythrocyte degradation is regulated.

REFERENCES

REFERENCES
1.
Mebius
RE
,
Kraal
G
.
Structure and function of the spleen
.
Nat Rev Immunol
.
2005
;
5
(
8
):
606
-
616
.
2.
de Back
DZ
,
Kostova
EB
,
van Kraaij
M
,
van den Berg
TK
,
van Bruggen
R
.
Of macrophages and red blood cells; a complex love story
.
Front Physiol
.
2014
;
5
:
9
.
3.
Burger
P
,
Hilarius-Stokman
P
,
de Korte
D
,
van den Berg
TK
,
van Bruggen
R
.
CD47 functions as a molecular switch for erythrocyte phagocytosis
.
Blood
.
2012
;
119
(
23
):
5512
-
5521
.
4.
Seppi
C
,
Castellana
MA
,
Minetti
G
,
Piccinini
G
,
Balduini
C
,
Brovelli
A
.
Evidence for membrane protein oxidation during in vivo aging of human erythrocytes
.
Mech Ageing Dev
.
1991
;
57
(
3
):
247
-
258
.
5.
Arese
P
,
Turrini
F
,
Schwarzer
E
.
Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes
.
Cell Physiol Biochem
.
2005
;
16
(
4-6
):
133
-
146
.
6.
Danon
D
,
Marikovsky
Y
.
The aging of the red blood cell. A multifactor process
.
Blood Cells
.
1988
;
14
(
1
):
7
-
18
.
7.
Deplaine
G
,
Safeukui
I
,
Jeddi
F
, et al
.
The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro
.
Blood
.
2011
;
117
(
8
):
e88
-
e95
.
8.
Duez
J
,
Holleran
JP
,
Ndour
PA
, et al
.
Mechanical clearance of red blood cells by the human spleen: Potential therapeutic applications of a biomimetic RBC filtration method
.
Transfus Clin Biol
.
2015
;
22
(
3
):
151
-
157
.
9.
Huang
S
,
Amaladoss
A
,
Liu
M
, et al
.
In vivo splenic clearance correlates with in vitro deformability of red blood cells from Plasmodium yoelii-infected mice
.
Infect Immun
.
2014
;
82
(
6
):
2532
-
2541
.
10.
Klei
TRL
,
de Back
DZ
,
Asif
PJ
, et al
.
Glycophorin-C sialylation regulates Lu/BCAM adhesive capacity during erythrocyte aging
.
Blood Adv
.
2018
;
2
(
1
):
14
-
24
.
11.
Kerfoot
SM
,
McRae
K
,
Lam
F
, et al
.
A novel mechanism of erythrocyte capture from circulation in humans
.
Exp Hematol
.
2008
;
36
(
2
):
111
-
118
.
12.
Bruce
LJ
,
Ring
SM
,
Ridgwell
K
, et al
.
South-east Asian ovalocytic (SAO) erythrocytes have a cold sensitive cation leak: implications for in vitro studies on stored SAO red cells
.
Biochim Biophys Acta
.
1999
;
1416
(
1-2
):
258
-
270
.
13.
Liu
SC
,
Zhai
S
,
Palek
J
, et al
.
Molecular defect of the band 3 protein in southeast Asian ovalocytosis
.
N Engl J Med
.
1990
;
323
(
22
):
1530
-
1538
.
14.
Moulin
PA
,
Baccini
V
.
Incidental finding of 3 Southeast Asian ovalocytosis cases by attentive examination of blood smears
.
Blood
.
2017
;
129
(
1
):
133
.
15.
Gottlieb
Y
,
Topaz
O
,
Cohen
LA
, et al
.
Physiologically aged red blood cells undergo erythrophagocytosis in vivo but not in vitro
.
Haematologica
.
2012
;
97
(
7
):
994
-
1002
.
16.
Jandl
JH
,
Greenberg
MS
,
Yonemoto
RH
,
Castle
WB
.
Clinical determination of the sites of red cell sequestration in hemolytic anemias
.
J Clin Invest
.
1956
;
35
(
8
):
842
-
867
.
17.
Shemin
D
,
Rittenberg
D
.
The life span of the human red blood cell
.
J Biol Chem
.
1946
;
166
(
2
):
627
-
636
.
18.
Crosby
WH
.
Normal functions of the spleen relative to red blood cells: a review
.
Blood
.
1959
;
14
(
4
):
399
-
408
.
19.
Nagelkerke
SQ
,
Bruggeman
CW
,
den Haan
JMM
, et al
.
Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fc-γ receptors
.
Blood Adv
.
2018
;
2
(
8
):
941
-
953
.
20.
Kohyama
M
,
Ise
W
,
Edelson
BT
, et al
.
Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis
.
Nature
.
2009
;
457
(
7227
):
318
-
321
.
21.
Kurotaki
D
,
Uede
T
,
Tamura
T
.
Functions and development of red pulp macrophages
.
Microbiol Immunol
.
2015
;
59
(
2
):
55
-
62
.
22.
Kondo
H
,
Saito
K
,
Grasso
JP
,
Aisen
P
.
Iron metabolism in the erythrophagocytosing Kupffer cell
.
Hepatology
.
1988
;
8
(
1
):
32
-
38
.
23.
Loegering
DJ
,
Commins
LM
,
Minnear
FL
,
Gary
LA
,
Hill
LA
.
Effect of Kupffer cell phagocytosis of erythrocytes and erythrocyte ghosts on susceptibility to endotoxemia and bacteremia
.
Infect Immun
.
1987
;
55
(
9
):
2074
-
2080
.
24.
Mellman
IS
,
Plutner
H
,
Steinman
RM
,
Unkeless
JC
,
Cohn
ZA
.
Internalization and degradation of macrophage Fc receptors during receptor-mediated phagocytosis
.
J Cell Biol
.
1983
;
96
(
3
):
887
-
895
.
25.
Gilson
CR
,
Kraus
TS
,
Hod
EA
, et al
.
A novel mouse model of red blood cell storage and posttransfusion in vivo survival
.
Transfusion
.
2009
;
49
(
8
):
1546
-
1553
.
26.
Straat
M
,
Klei
T
,
de Korte
D
,
van Bruggen
R
,
Juffermans
NP
.
Accelerated clearance of human red blood cells in a rat transfusion model
.
Intensive Care Med Exp
.
2015
;
3
(
1
):
27
.
27.
Hod
EA
,
Arinsburg
SA
,
Francis
RO
,
Hendrickson
JE
,
Zimring
JC
,
Spitalnik
SL
.
Use of mouse models to study the mechanisms and consequences of RBC clearance
.
Vox Sang
.
2010
;
99
(
2
):
99
-
111
.
28.
Cresci
GA
,
Allende
D
,
McMullen
MR
,
Nagy
LE
.
Alternative complement pathway component Factor D contributes to efficient clearance of tissue debris following acute CCl4-induced injury
.
Mol Immunol
.
2015
;
64
(
1
):
9
-
17
.
29.
Noris
M
,
Remuzzi
G
.
Overview of complement activation and regulation
.
Semin Nephrol
.
2013
;
33
(
6
):
479
-
492
.
30.
Sosale
NG
,
Rouhiparkouhi
T
,
Bradshaw
AM
,
Dimova
R
,
Lipowsky
R
,
Discher
DE
.
Cell rigidity and shape override CD47’s “self”-signaling in phagocytosis by hyperactivating myosin-II
.
Blood
.
2015
;
125
(
3
):
542
-
552
.
31.
Klausner
MA
,
Hirsch
LJ
,
Leblond
PF
,
Chamberlain
JK
,
Klemperer
MR
,
Segel
GB
.
Contrasting splenic mechanisms in the blood clearance of red blood cells and colloidal particles
.
Blood
.
1975
;
46
(
6
):
965
-
976
.
32.
Pivkin
IV
,
Peng
Z
,
Karniadakis
GE
,
Buffet
PA
,
Dao
M
,
Suresh
S
.
Biomechanics of red blood cells in human spleen and consequences for physiology and disease
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
28
):
7804
-
7809
.
33.
Hayden
MR
,
Sowers
JR
,
Tyagi
SC
.
The central role of vascular extracellular matrix and basement membrane remodeling in metabolic syndrome and type 2 diabetes: the matrix preloaded
.
Cardiovasc Diabetol
.
2005
;
4
(
1
):
9
.
34.
Kalluri
R
.
Basement membranes: structure, assembly and role in tumour angiogenesis
.
Nat Rev Cancer
.
2003
;
3
(
6
):
422
-
433
.
35.
Telen
MJ
.
Red blood cell surface adhesion molecules: their possible roles in normal human physiology and disease
.
Semin Hematol
.
2000
;
37
(
2
):
130
-
142
.
36.
Parsons
SF
,
Spring
FA
,
Chasis
JA
,
Anstee
DJ
.
Erythroid cell adhesion molecules Lutheran and LW in health and disease
.
Best Pract Res Clin Haematol
.
1999
;
12
(
4
):
729
-
745
.
37.
Kikkawa
Y
,
Miner
JH
.
Review: Lutheran/B-CAM: a laminin receptor on red blood cells and in various tissues
.
Connect Tissue Res
.
2005
;
46
(
4-5
):
193
-
199
.
38.
Buffet
PA
,
Safeukui
I
,
Milon
G
,
Mercereau-Puijalon
O
,
David
PH
.
Retention of erythrocytes in the spleen: a double-edged process in human malaria
.
Curr Opin Hematol
.
2009
;
16
(
3
):
157
-
164
.
39.
Rifkind
JM
,
Mohanty
JG
,
Nagababu
E
.
The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions
.
Front Physiol
.
2015
;
5
:
500
.
40.
Smith
A
,
McCulloh
RJ
.
Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders
.
Front Physiol
.
2015
;
6
:
187
.
You do not currently have access to this content.