Key Points

  • High-resolution proteomics identifies characteristic targetable pathways active in functionally validated LSCs compared to healthy HSPCs.

  • Metabolic pathway changes are primarily evident at the protein, not transcript, level, highlighting the strength of proteomic analyses.

Abstract

Acute myeloid leukemia is characterized by the accumulation of clonal myeloid blast cells unable to differentiate into mature leukocytes. Chemotherapy induces remission in the majority of patients, but relapse rates are high and lead to poor clinical outcomes. Because this is primarily caused by chemotherapy-resistant leukemic stem cells (LSCs), it is essential to eradicate LSCs to improve patient survival. LSCs have predominantly been studied at the transcript level, thus information about posttranscriptionally regulated genes and associated networks is lacking. Here, we extend our previous report on LSC proteomes to healthy age-matched hematopoietic stem and progenitor cells (HSPCs) and correlate the proteomes to the corresponding transcriptomes. By comparing LSCs to leukemic blasts and healthy HSPCs, we validate candidate LSC markers and highlight novel and potentially targetable proteins that are absent or only lowly expressed in HSPCs. In addition, our data provide strong evidence that LSCs harbor a characteristic energy metabolism, adhesion molecule composition, as well as RNA-processing properties. Furthermore, correlating proteome and transcript data of the same individual samples highlights the strength of proteome analyses, which are particularly potent in detecting alterations in metabolic pathways. In summary, our study provides a comprehensive proteomic and transcriptomic characterization of functionally validated LSCs, blasts, and healthy HSPCs, representing a valuable resource helping to design LSC-directed therapies.

REFERENCES

1.
Döhner
H
,
Weisdorf
DJ
,
Bloomfield
CD
.
Acute myeloid leukemia
.
N Engl J Med
.
2015
;
373
(
12
):
1136
-
1152
.
2.
Lapidot
T
,
Sirard
C
,
Vormoor
J
, et al
.
A cell initiating human acute myeloid leukaemia after transplantation into SCID mice
.
Nature
.
1994
;
367
(
6464
):
645
-
648
.
3.
Bonnet
D
,
Dick
JE
.
Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell
.
Nat Med
.
1997
;
3
(
7
):
730
-
737
.
4.
Dick
JE
.
Acute myeloid leukemia stem cells
.
Ann N Y Acad Sci
.
2005
;
1044
(
1
):
1
-
5
.
5.
Dick
JE
.
Stem cell concepts renew cancer research
.
Blood
.
2008
;
112
(
13
):
4793
-
4807
.
6.
Reya
T
,
Morrison
SJ
,
Clarke
MF
,
Weissman
IL
.
Stem cells, cancer, and cancer stem cells
.
Nature
.
2001
;
414
(
6859
):
105
-
111
.
7.
Gentles
AJ
,
Plevritis
SK
,
Majeti
R
,
Alizadeh
AA
.
Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia
.
JAMA
.
2010
;
304
(
24
):
2706
-
2715
.
8.
Eppert
K
,
Takenaka
K
,
Lechman
ER
, et al
.
Stem cell gene expression programs influence clinical outcome in human leukemia
.
Nat Med
.
2011
;
17
(
9
):
1086
-
1093
.
9.
Ng
SW
,
Mitchell
A
,
Kennedy
JA
, et al
.
A 17-gene stemness score for rapid determination of risk in acute leukaemia
.
Nature
.
2016
;
540
(
7633
):
433
-
437
.
10.
Pollyea
DA
,
Jordan
CT
.
Therapeutic targeting of acute myeloid leukemia stem cells
.
Blood
.
2017
;
129
(
12
):
1627
-
1635
.
11.
Pabst
C
,
Bergeron
A
,
Lavallée
VP
, et al
.
GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo
.
Blood
.
2016
;
127
(
16
):
2018
-
2027
.
12.
Raffel
S
,
Falcone
M
,
Kneisel
N
, et al
.
BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation [published correction appears in Nature. 2018;560(7718):E28]
.
Nature
.
2017
;
551
(
7680
):
384
-
388
.
13.
Cocciardi
S
,
Dolnik
A
,
Kapp-Schwoerer
S
, et al
.
Clonal evolution patterns in acute myeloid leukemia with NPM1 mutation
.
Nat Commun
.
2019
;
10
(
1
):
2031
.
14.
Paczulla
AM
,
Rothfelder
K
,
Raffel
S
, et al
.
Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion [published correction appears in Nature. 2019;572(7770):E19]
.
Nature
.
2019
;
572
(
7768
):
254
-
259
.
15.
Sterne-Weiler
T
,
Weatheritt
RJ
,
Best
AJ
,
Ha
KCH
,
Blencowe
BJ
.
Efficient and accurate quantitative profiling of alternative splicing patterns of any complexity on a laptop
.
Mol Cell
.
2018
;
72
(
1
):
187
-
200.e6
.
16.
Huang
W
,
Sherman
BT
,
Lempicki
RA
.
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
.
Nat Protoc
.
2009
;
4
(
1
):
44
-
57
.
17.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
18.
Vizcaíno
JA
,
Csordas
A
,
del-Toro
N
, et al
.
2016 update of the PRIDE database and its related tools
.
Nucleic Acids Res
.
2016
;
44
(
D1
):
D447
-
D456
.
19.
Chung
SS
,
Eng
WS
,
Hu
W
, et al
.
CD99 is a therapeutic target on disease stem cells in myeloid malignancies
.
Sci Transl Med
.
2017
;
9
(
374
):
eaaj2025
.
20.
Dolgin
E
.
First CD123-targeted drug approved after wowing in rare cancer
.
Nat Biotechnol
.
2019
;
37
(
3
):
202
-
203
.
21.
Seneviratne
AK
,
Xu
M
,
Henao
JJA
, et al
.
The mitochondrial transacylase, Tafazzin, regulates for AML stemness by modulating intracellular levels of phospholipids
.
Cell Stem Cell
.
2019
;
24
(
4
):
621
-
636.e16
.
22.
Ginés
S
,
Mariño
M
,
Mallol
J
, et al
.
Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction
.
Biochem J
.
2002
;
361
(
pt 2
):
203
-
209
.
23.
Wang
LD
,
Ficarro
SB
,
Hutchinson
JN
, et al
.
Phosphoproteomic profiling of mouse primary HSPCs reveals new regulators of HSPC mobilization
.
Blood
.
2016
;
128
(
11
):
1465
-
1474
.
24.
Garzon
R
,
Savona
M
,
Baz
R
, et al
.
A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia
.
Blood
.
2017
;
129
(
24
):
3165
-
3174
.
25.
Zhou
F
,
Liu
Y
,
Rohde
C
, et al
.
AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia
.
Nat Cell Biol
.
2017
;
19
(
7
):
844
-
855
.
26.
Zhu
G-H
,
Dai
H-P
,
Shen
Q
, et al
.
Downregulation of LPXN expression by siRNA decreases the malignant proliferation and transmembrane invasion of SHI-1 cells
.
Oncol Lett
.
2019
;
17
(
1
):
135
-
140
.
27.
Herrmann
H
,
Sadovnik
I
,
Cerny-Reiterer
S
, et al
.
Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia
.
Blood
.
2014
;
123
(
25
):
3951
-
3962
.
28.
Ariës
IM
,
Bodaar
K
,
Karim
SA
, et al
.
PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia
.
J Exp Med
.
2018
;
215
(
12
):
3094
-
3114
.
29.
Göllner
S
,
Oellerich
T
,
Agrawal-Singh
S
, et al
.
Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia
.
Nat Med
.
2017
;
23
(
1
):
69
-
78
.
30.
Zhou
L
,
Wang
Y
,
Zhou
M
, et al
.
HOXA9 inhibits HIF-1α-mediated glycolysis through interacting with CRIP2 to repress cutaneous squamous cell carcinoma development
.
Nat Commun
.
2018
;
9
(
1
):
1480
.
31.
Farge
T
,
Saland
E
,
de Toni
F
, et al
.
Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism
.
Cancer Discov
.
2017
;
7
(
7
):
716
-
735
.
32.
Ye
H
,
Adane
B
,
Khan
N
, et al
.
Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche
.
Cell Stem Cell
.
2016
;
19
(
1
):
23
-
37
.
33.
Lee
JH
,
Budanov
AV
,
Karin
M
.
Sestrins orchestrate cellular metabolism to attenuate aging
.
Cell Metab
.
2013
;
18
(
6
):
792
-
801
.
34.
Guan
Y
,
Gerhard
B
,
Hogge
DE
.
Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML)
.
Blood
.
2003
;
101
(
8
):
3142
-
3149
.
35.
Windisch
R
,
Pirschtat
N
,
Kellner
C
, et al
.
Oncogenic deregulation of cell adhesion molecules in leukemia
.
Cancers (Basel)
.
2019
;
11
(
3
):
E311
.
36.
Lagadinou
ED
,
Sach
A
,
Callahan
K
, et al
.
BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
.
Cell Stem Cell
.
2013
;
12
(
3
):
329
-
341
.
37.
Pollyea
DA
,
Stevens
BM
,
Jones
CL
, et al
.
Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia
.
Nat Med
.
2018
;
24
(
12
):
1859
-
1866
.
38.
Figueroa
ME
,
Abdel-Wahab
O
,
Lu
C
, et al
.
Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
.
Cancer Cell
.
2010
;
18
(
6
):
553
-
567
.
39.
Marcucci
G
,
Maharry
K
,
Wu
YZ
, et al
.
IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study
.
J Clin Oncol
.
2010
;
28
(
14
):
2348
-
2355
.
40.
Yan
H
,
Parsons
DW
,
Jin
G
, et al
.
IDH1 and IDH2 mutations in gliomas
.
N Engl J Med
.
2009
;
360
(
8
):
765
-
773
.
41.
Papaemmanuil
E
,
Cazzola
M
,
Boultwood
J
, et al;
Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium
.
Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts
.
N Engl J Med
.
2011
;
365
(
15
):
1384
-
1395
.
42.
Yoshida
K
,
Sanada
M
,
Shiraishi
Y
, et al
.
Frequent pathway mutations of splicing machinery in myelodysplasia
.
Nature
.
2011
;
478
(
7367
):
64
-
69
.
43.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
44.
Crews
LA
,
Balaian
L
,
Delos Santos
NP
, et al
.
RNA splicing modulation selectively impairs leukemia stem cell maintenance in secondary human AML
.
Cell Stem Cell
.
2016
;
19
(
5
):
599
-
612
.
45.
Williamson
AJ
,
Smith
DL
,
Blinco
D
, et al
.
Quantitative proteomics analysis demonstrates post-transcriptional regulation of embryonic stem cell differentiation to hematopoiesis
.
Mol Cell Proteomics
.
2008
;
7
(
3
):
459
-
472
.
46.
Jones
CL
,
Stevens
BM
,
D’Alessandro
A
, et al
.
Inhibition of amino acid metabolism selectively targets human leukemia stem cells [published correction appears in Cancer Cell. 2019;35(2):333-335]
.
Cancer Cell
.
2018
;
34
(
5
):
724
-
740.e4
.
47.
Jones
CL
,
Stevens
BM
,
D’Alessandro
A
, et al
.
Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II
.
Blood
.
2019
;
134
(
4
):
389
-
394
.
48.
Sancho
P
,
Barneda
D
,
Heeschen
C
.
Hallmarks of cancer stem cell metabolism
.
Br J Cancer
.
2016
;
114
(
12
):
1305
-
1312
.
49.
Samudio
I
,
Harmancey
R
,
Fiegl
M
, et al
.
Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
.
J Clin Invest
.
2010
;
120
(
1
):
142
-
156
.
50.
Ito
K
,
Carracedo
A
,
Weiss
D
, et al
.
A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
.
Nat Med
.
2012
;
18
(
9
):
1350
-
1358
.
51.
Baccelli
I
,
Gareau
Y
,
Lehnertz
B
, et al
.
Mubritinib targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia
.
Cancer Cell
.
2019
;
36
(
1
):
84
-
99.e8
.
52.
Cabezas-Wallscheid
N
,
Klimmeck
D
,
Hansson
J
, et al
.
Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis
.
Cell Stem Cell
.
2014
;
15
(
4
):
507
-
522
.
53.
Haas
S
,
Hansson
J
,
Klimmeck
D
, et al
.
Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors
.
Cell Stem Cell
.
2015
;
17
(
4
):
422
-
434
.
54.
Velten
L
,
Haas
SF
,
Raffel
S
, et al
.
Human haematopoietic stem cell lineage commitment is a continuous process
.
Nat Cell Biol
.
2017
;
19
(
4
):
271
-
281
.
55.
Paul
F
,
Arkin
Y
,
Giladi
A
, et al
.
Transcriptional heterogeneity and lineage commitment in myeloid progenitors [published correction appears in Cell. 2016;164(1-2):325]
.
Cell
.
2015
;
163
(
7
):
1663
-
1677
.
56.
van Galen
P
,
Hovestadt
V
,
Wadsworth Ii
MH
, et al
.
Single-cell RNA-Seq reveals AML hierarchies relevant to disease progression and immunity
.
Cell
.
2019
;
176
(
6
):
1265
-
1281.e24
.
57.
Nestorowa
S
,
Hamey
FK
,
Pijuan Sala
B
, et al
.
A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
.
Blood
.
2016
;
128
(
8
):
e20
-
e31
.
58.
Notta
F
,
Zandi
S
,
Takayama
N
, et al
.
Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
.
Science
.
2016
;
351
(
6269
):
aab2116
.
59.
Wilson
NK
,
Kent
DG
,
Buettner
F
, et al
.
Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations
.
Cell Stem Cell
.
2015
;
16
(
6
):
712
-
724
.
60.
Hughes
CS
,
Foehr
S
,
Garfield
DA
,
Furlong
EE
,
Steinmetz
LM
,
Krijgsveld
J
.
Ultrasensitive proteome analysis using paramagnetic bead technology
.
Mol Syst Biol
.
2014
;
10
(
10
):
757
.
61.
Abazova
N
,
Krijgsveld
J
.
Advances in stem cell proteomics
.
Curr Opin Genet Dev
.
2017
;
46
:
149
-
155
.
You do not currently have access to this content.

Sign in via your Institution

Sign In