Key Points

  • CRISPR/Cas9-mediated T-cell-receptor knockout with anti-CD19-CAR expression enables allo-CAR–T-cell therapy.

  • Coexpression of endogenous TCR and CD19-CAR prolongs in vivo persistence of T cells.

Abstract

Anti-CD19 chimeric antigen receptor (CAR) T cells showed significant antileukemic activity in B-precursor acute lymphoblastic leukemia (ALL). Allogeneic, HLA-mismatched off-the-shelf third-party donors may offer ideal fitness of the effector cells, but carry the risk of graft-versus-host disease. Knockout (KO) of the endogenous T-cell receptor (TCR) in CD19-CAR-T cells may be a promising solution. Here, we induced a CRISPR/Cas9-mediated KO of the TCRβ chain in combination with a second-generation retroviral CAR transduction including a 4-1BB costimulatory domain in primary T cells. This tandem engineering led to a highly functional population of TCR-KO-CAR-T cells with strong activation (CD25, interferon γ), proliferation, and specific killing upon CD19 target recognition. TCR-KO-CAR-T cells had a balanced phenotype of central memory and effector memory T cells. KO of the endogenous TCR in T cells strongly ablated alloreactivity in comparison with TCR-expressing T cells. In a patient-derived xenograft model of childhood ALL, TCR-KO-CAR-T cells clearly controlled CD19+ leukemia burden and improved survival in vivo. However, coexpression of endogenous TCR plus CAR led to superior persistence of T cells and significantly prolonged leukemia control in vivo, confirmed by a second in vivo model using the leukemia cell line NALM6. These results point toward an essential role of the endogenous TCR for longevity of the response at the price of alloreactivity. In conclusion, anti-CD19 CAR T cells with a CRISPR/Cas9-mediated TCR-KO are promising candidates for nonmatched third-party adoptive T-cell transfer with high antileukemic functionality in the absence of alloreactivity, but long-term persistence in vivo is better in the presence of the endogenous TCR.

REFERENCES

REFERENCES
1.
Lee
DW
,
Kochenderfer
JN
,
Stetler-Stevenson
M
, et al
.
T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial
.
Lancet
.
2015
;
385
(
9967
):
517
-
528
.
2.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
3.
Gardner
RA
,
Finney
O
,
Annesley
C
, et al
.
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
.
Blood
.
2017
;
129
(
25
):
3322
-
3331
.
4.
O’Leary
MC
,
Lu
X
,
Huang
Y
, et al
.
FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia
.
Clin Cancer Res
.
2019
;
25
(
4
):
1142
-
1146
.
5.
Blaeschke
F
,
Stenger
D
,
Kaeuferle
T
, et al
.
Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19+ acute lymphoblastic leukemia
.
Cancer Immunol Immunother
.
2018
;
67
(
7
):
1053
-
1066
.
6.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
7.
Feucht
J
,
Kayser
S
,
Gorodezki
D
, et al
.
T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts
.
Oncotarget
.
2016
;
7
(
47
):
76902
-
76919
.
8.
Qasim
W
,
Zhan
H
,
Samarasinghe
S
, et al
.
Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells
.
Sci Transl Med
.
2017
;
9
(
374
):
eaaj2013
.
9.
Eyquem
J
,
Mansilla-Soto
J
,
Giavridis
T
, et al
.
Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection
.
Nature
.
2017
;
543
(
7643
):
113
-
117
.
10.
Lapteva
N
,
Gilbert
M
,
Diaconu
I
, et al
.
T cell receptor stimulation enhances the expansion and function of CD19 chimeric antigen receptor-expressing T cells
.
Clin Cancer Res
.
2019
;
25
(
24
):
7340
-
7350
.
11.
Nicholson
IC
,
Lenton
KA
,
Little
DJ
, et al
.
Construction and characterisation of a functional CD19 specific single chain Fv fragment for immunotherapy of B lineage leukaemia and lymphoma
.
Mol Immunol
.
1997
;
34
(
16-17
):
1157
-
1165
.
12.
Schober
K
,
Müller
TR
,
Gökmen
F
, et al
.
Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function
.
Nat Biomed Eng
.
2019
;
3
(
12
):
974
-
984
.
13.
Ren
J
,
Liu
X
,
Fang
C
,
Jiang
S
,
June
CH
,
Zhao
Y
.
Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition
.
Clin Cancer Res
.
2017
;
23
(
9
):
2255
-
2266
.
14.
Chicaybam
L
,
Barcelos
C
,
Peixoto
B
, et al
.
An efficient electroporation protocol for the genetic modification of mammalian cells
.
Front Bioeng Biotechnol
.
2017
;
4
:
99
.
15.
Vick
B
,
Rothenberg
M
,
Sandhöfer
N
, et al
.
An advanced preclinical mouse model for acute myeloid leukemia using patients’ cells of various genetic subgroups and in vivo bioluminescence imaging
.
PLoS One
.
2015
;
10
(
3
):
e0120925
.
16.
Heckl
BC
,
Carlet
M
,
Vick
B
, et al
.
Frequent and reliable engraftment of certain adult primary acute lymphoblastic leukemias in mice
.
Leuk Lymphoma
.
2019
;
60
(
3
):
848
-
851
.
17.
Ebinger
S
,
Özdemir
EZ
,
Ziegenhain
C
, et al
.
Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia
.
Cancer Cell
.
2016
;
30
(
6
):
849
-
862
.
18.
Ren
J
,
Liu
X
,
Fang
C
,
Jiang
S
,
June
CH
,
Zhao
Y
.
Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition
.
Clin Cancer Res
.
2017
;
23
(
9
):
2255
-
2266
.
19.
Gattinoni
L
,
Lugli
E
,
Ji
Y
, et al
.
A human memory T cell subset with stem cell-like properties
.
Nat Med
.
2011
;
17
(
10
):
1290
-
1297
.
20.
Torikai
H
,
Reik
A
,
Liu
P-Q
, et al
.
A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR [published correction appears in Blood. 2015;126(22):2527]
.
Blood
.
2012
;
119
(
24
):
5697
-
5705
.
21.
Graef
P
,
Buchholz
VR
,
Stemberger
C
, et al
.
Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8(+) central memory T cells
.
Immunity
.
2014
;
41
(
1
):
116
-
126
.
22.
Mujib
S
,
Jones
RB
,
Lo
C
, et al
.
Antigen-independent induction of Tim-3 expression on human T cells by the common γ-chain cytokines IL-2, IL-7, IL-15, and IL-21 is associated with proliferation and is dependent on the phosphoinositide 3-kinase pathway
.
J Immunol
.
2012
;
188
(
8
):
3745
-
3756
.
23.
Blaeschke
F
,
Willier
S
,
Stenger
D
, et al
.
Leukemia-induced dysfunctional TIM-3+CD4+ bone marrow T cells increase risk of relapse in pediatric B-precursor ALL patients. [published online ahead of print 13 March 2020]
Leukemia
.
doi:10.1038/s41375-020-0793-1
.
24.
Grupp
SA
,
Maude
SL
,
Shaw
PA
, et al
.
Durable remissions in children with relapsed/refractory ALL treated with T cells engineered with a CD19-targeted chimeric antigen receptor (CTL019) [abstract]
.
Blood
.
2015
;
126
(
23
).
Abstract 681
.
25.
Yang
Y
,
Kohler
ME
,
Chien
CD
, et al
.
TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance
.
Sci Transl Med
.
2017
;
9
(
417
):
eaag1209
.
26.
Hu
B
,
Ren
J
,
Luo
Y
, et al
.
Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18
.
Cell Rep
.
2017
;
20
(
13
):
3025
-
3033
.
27.
Stevanović
S
,
Nijmeijer
BA
,
van Schie
MLJ
, et al
.
Donor T cells administered over HLA class II barriers mediate antitumor immunity without broad off-target toxicity in a NOD/scid mouse model of acute leukemia
.
Biol Blood Marrow Transplant
.
2013
;
19
(
6
):
867
-
875
.
28.
Ali
N
,
Flutter
B
,
Sanchez Rodriguez
R
, et al
.
Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype
.
PLoS One
.
2012
;
7
(
8
):
e44219
.
29.
Bridgeman
JS
,
Hawkins
RE
,
Bagley
S
,
Blaylock
M
,
Holland
M
,
Gilham
DE
.
The optimal antigen response of chimeric antigen receptors harboring the CD3zeta transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex
.
J Immunol
.
2010
;
184
(
12
):
6938
-
6949
.
30.
Long
AH
,
Haso
WM
,
Shern
JF
, et al
.
4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors
.
Nat Med
.
2015
;
21
(
6
):
581
-
590
.
31.
Hurton
LV
,
Singh
H
,
Najjar
AM
, et al
.
Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells
.
Proc Natl Acad Sci USA
.
2016
;
113
(
48
):
E7788
-
E7797
.
32.
Mazur
B
,
Mertas
A
,
Sońta-Jakimczyk
D
,
Szczepański
T
,
Janik-Moszant
A
.
Concentration of IL-2, IL-6, IL-8, IL-10 and TNF-alpha in children with acute lymphoblastic leukemia after cessation of chemotherapy
.
Hematol Oncol
.
2004
;
22
(
1
):
27
-
34
.
You do not currently have access to this content.