Abstract

Vitamin C serves as a cofactor for Fe(II) and 2-oxoglutarate–dependent dioxygenases including TET family enzymes, which catalyze the oxidation of 5-methylcytosine into 5-hydroxymethylcytosine and further oxidize methylcytosines. Loss-of-function mutations in epigenetic regulators such as TET genes are prevalent in hematopoietic malignancies. Vitamin C deficiency is frequently observed in cancer patients. In this review, we discuss the role of vitamin C and TET proteins in cancer, with a focus on hematopoietic malignancies, T regulatory cells, and other immune system cells.

REFERENCES

REFERENCES
1.
Du
J
,
Cullen
JJ
,
Buettner
GR
.
Ascorbic acid: chemistry, biology and the treatment of cancer
.
Biochim Biophys Acta
.
2012
;
1826
(
2
):
443
-
457
.
2.
Padayatty
SJ
,
Levine
M
.
Vitamin C: the known and the unknown and Goldilocks
.
Oral Dis
.
2016
;
22
(
6
):
463
-
493
.
3.
Young
JI
,
Züchner
S
,
Wang
G
.
Regulation of the epigenome by vitamin C
.
Annu Rev Nutr
.
2015
;
35
(
1
):
545
-
564
.
4.
Gillberg
L
,
Ørskov
AD
,
Liu
M
,
Harsløf
LBS
,
Jones
PA
,
Grønbæk
K
.
Vitamin C: a new player in regulation of the cancer epigenome
.
Semin Cancer Biol
.
2018
;
51
:
59
-
67
.
5.
Schleicher
RL
,
Carroll
MD
,
Ford
ES
,
Lacher
DA
.
Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES)
.
Am J Clin Nutr
.
2009
;
90
(
5
):
1252
-
1263
.
6.
Huijskens
MJ
,
Wodzig
WK
,
Walczak
M
,
Germeraad
WT
,
Bos
GM
.
Ascorbic acid serum levels are reduced in patients with hematological malignancies
.
Results Immunol
.
2016
;
6
:
8
-
10
.
7.
Mayland
CR
,
Bennett
MI
,
Allan
K
.
Vitamin C deficiency in cancer patients
.
Palliat Med
.
2005
;
19
(
1
):
17
-
20
.
8.
Anthony
HM
,
Schorah
CJ
.
Severe hypovitaminosis C in lung-cancer patients: the utilization of vitamin C in surgical repair and lymphocyte-related host resistance
.
Br J Cancer
.
1982
;
46
(
3
):
354
-
367
.
9.
Liu
M
,
Ohtani
H
,
Zhou
W
, et al
.
Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine
.
Proc Natl Acad Sci USA
.
2016
;
113
(
37
):
10238
-
10244
.
10.
Loenarz
C
,
Schofield
CJ
.
Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases
.
Trends Biochem Sci
.
2011
;
36
(
1
):
7
-
18
.
11.
McDonough
MA
,
Loenarz
C
,
Chowdhury
R
,
Clifton
IJ
,
Schofield
CJ
.
Structural studies on human 2-oxoglutarate dependent oxygenases
.
Curr Opin Struct Biol
.
2010
;
20
(
6
):
659
-
672
.
12.
Tahiliani
M
,
Koh
KP
,
Shen
Y
, et al
.
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
.
Science
.
2009
;
324
(
5929
):
930
-
935
.
13.
Ko
M
,
Huang
Y
,
Jankowska
AM
, et al
.
Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2
.
Nature
.
2010
;
468
(
7325
):
839
-
843
.
14.
Iyer
LM
,
Tahiliani
M
,
Rao
A
,
Aravind
L
.
Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids
.
Cell Cycle
.
2009
;
8
(
11
):
1698
-
1710
.
15.
Ito
S
,
Shen
L
,
Dai
Q
, et al
.
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
.
Science
.
2011
;
333
(
6047
):
1300
-
1303
.
16.
He
YF
,
Li
BZ
,
Li
Z
, et al
.
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
.
Science
.
2011
;
333
(
6047
):
1303
-
1307
.
17.
Pastor
WA
,
Aravind
L
,
Rao
A
.
TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
.
Nat Rev Mol Cell Biol
.
2013
;
14
(
6
):
341
-
356
.
18.
Wu
X
,
Zhang
Y
.
TET-mediated active DNA demethylation: mechanism, function and beyond
.
Nat Rev Genet
.
2017
;
18
(
9
):
517
-
534
.
19.
Lio
CJ
,
Yue
X
,
Lopez-Moyado
IF
,
Tahiliani
M
,
Aravind
L
,
Rao
A
.
TET methylcytosine oxidases: new insights from a decade of research
.
J Biosci
.
2020
;
45
(
1
):
45
.
20.
Tsagaratou
A
,
Lio
CJ
,
Yue
X
,
Rao
A
.
TET methylcytosine oxidases in T cell and B cell development and function
.
Front Immunol
.
2017
;
8
:
220
.
21.
Blaschke
K
,
Ebata
KT
,
Karimi
MM
, et al
.
Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells
.
Nature
.
2013
;
500
(
7461
):
222
-
226
.
22.
Minor
EA
,
Court
BL
,
Young
JI
,
Wang
G
.
Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine
.
J Biol Chem
.
2013
;
288
(
19
):
13669
-
13674
.
23.
Yin
R
,
Mao
SQ
,
Zhao
B
, et al
.
Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals
.
J Am Chem Soc
.
2013
;
135
(
28
):
10396
-
10403
.
24.
Yue
X
,
Trifari
S
,
Äijö
T
, et al
.
Control of Foxp3 stability through modulation of TET activity
.
J Exp Med
.
2016
;
213
(
3
):
377
-
397
.
25.
Huang
Y
,
Rao
A
.
Connections between TET proteins and aberrant DNA modification in cancer
.
Trends Genet
.
2014
;
30
(
10
):
464
-
474
.
26.
Ko
M
,
An
J
,
Rao
A
.
DNA methylation and hydroxymethylation in hematologic differentiation and transformation
.
Curr Opin Cell Biol
.
2015
;
37
:
91
-
101
.
27.
Guillamot
M
,
Cimmino
L
,
Aifantis
I
.
The Impact of DNA Methylation in Hematopoietic Malignancies
.
Trends Cancer
.
2016
;
2
(
2
):
70
-
83
.
28.
Lio
CJ
,
Yuita
H
,
Rao
A
.
Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies
.
Blood
.
2019
;
134
(
18
):
1487
-
1497
.
29.
Agathocleous
M
,
Meacham
CE
,
Burgess
RJ
, et al
.
Ascorbate regulates haematopoietic stem cell function and leukaemogenesis
.
Nature
.
2017
;
549
(
7673
):
476
-
481
.
30.
Cimmino
L
,
Dolgalev
I
,
Wang
Y
, et al
.
Restoration of TET2 function blocks aberrant self-renewal and leukemia progression
.
Cell
.
2017
;
170
(
6
):
1079
-
1095
.
31.
Ko
M
,
An
J
,
Pastor
WA
,
Koralov
SB
,
Rajewsky
K
,
Rao
A
.
TET proteins and 5-methylcytosine oxidation in hematological cancers
.
Immunol Rev
.
2015
;
263
(
1
):
6
-
21
.
32.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
33.
Genovese
G
,
Kähler
AK
,
Handsaker
RE
, et al
.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N Engl J Med
.
2014
;
371
(
26
):
2477
-
2487
.
34.
Xie
M
,
Lu
C
,
Wang
J
, et al
.
Age-related mutations associated with clonal hematopoietic expansion and malignancies
.
Nat Med
.
2014
;
20
(
12
):
1472
-
1478
.
35.
Jan
M
,
Ebert
BL
,
Jaiswal
S
.
Clonal hematopoiesis
.
Semin Hematol
.
2017
;
54
(
1
):
43
-
50
.
36.
Balasubramani
A
,
Larjo
A
,
Bassein
JA
, et al
.
Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex
.
Nat Commun
.
2015
;
6
(
1
):
7307
.
37.
Jaiswal
S
,
Natarajan
P
,
Ebert
BL
.
Clonal hematopoiesis and atherosclerosis
.
N Engl J Med
.
2017
;
377
(
14
):
1401
-
1402
.
38.
Fuster
JJ
,
MacLauchlan
S
,
Zuriaga
MA
, et al
.
Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice
.
Science
.
2017
;
355
(
6327
):
842
-
847
.
39.
Ebert
BL
,
Libby
P
.
Clonal hematopoiesis confers predisposition to both cardiovascular disease and cancer: a newly recognized link between two major killers
.
Ann Intern Med
.
2018
;
169
(
2
):
116
-
117
.
40.
Khaw
KT
,
Bingham
S
,
Welch
A
, et al
.
Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. European Prospective Investigation into Cancer and Nutrition
.
Lancet
.
2001
;
357
(
9257
):
657
-
663
.
41.
Pfeifer
GP
,
Kadam
S
,
Jin
SG
.
5-hydroxymethylcytosine and its potential roles in development and cancer
.
Epigenetics Chromatin
.
2013
;
6
(
1
):
10
.
42.
Thienpont
B
,
Steinbacher
J
,
Zhao
H
, et al
.
Tumour hypoxia causes DNA hypermethylation by reducing TET activity
.
Nature
.
2016
;
537
(
7618
):
63
-
68
.
43.
Raffel
S
,
Falcone
M
,
Kneisel
N
, et al
.
BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation [correction in Nature. 2018;560:E28]
.
Nature
.
2017
;
551
(
7680
):
384
-
388
.
44.
Xiao
M
,
Yang
H
,
Xu
W
, et al
.
Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
.
Genes Dev
.
2012
;
26
(
12
):
1326
-
1338
.
45.
Figueroa
ME
,
Abdel-Wahab
O
,
Lu
C
, et al
.
Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
.
Cancer Cell
.
2010
;
18
(
6
):
553
-
567
.
46.
Cameron
E
,
Pauling
L
.
Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer
.
Proc Natl Acad Sci USA
.
1978
;
75
(
9
):
4538
-
4542
.
47.
Creagan
ET
,
Moertel
CG
,
O’Fallon
JR
, et al
.
Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial
.
N Engl J Med
.
1979
;
301
(
13
):
687
-
690
.
48.
Moertel
CG
,
Fleming
TR
,
Creagan
ET
,
Rubin
J
,
O’Connell
MJ
,
Ames
MM
.
High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison
.
N Engl J Med
.
1985
;
312
(
3
):
137
-
141
.
49.
Padayatty
SJ
,
Sun
H
,
Wang
Y
, et al
.
Vitamin C pharmacokinetics: implications for oral and intravenous use
.
Ann Intern Med
.
2004
;
140
(
7
):
533
-
537
.
50.
Fritz
H
,
Flower
G
,
Weeks
L
, et al
.
Intravenous vitamin C and cancer: a systematic review
.
Integr Cancer Ther
.
2014
;
13
(
4
):
280
-
300
.
51.
Nauman
G
,
Gray
JC
,
Parkinson
R
,
Levine
M
,
Paller
CJ
.
Systematic review of intravenous ascorbate in cancer clinical trials
.
Antioxidants
.
2018
;
7
(
7
):
E89
.
52.
Chen
Q
,
Espey
MG
,
Krishna
MC
, et al
.
Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues
.
Proc Natl Acad Sci USA
.
2005
;
102
(
38
):
13604
-
13609
.
53.
Yun
J
,
Mullarky
E
,
Lu
C
, et al
.
Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH
.
Science
.
2015
;
350
(
6266
):
1391
-
1396
.
54.
Schoenfeld
JD
,
Sibenaller
ZA
,
Mapuskar
KA
, et al
.
O2(-) and H2O2-mediated disruption of fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate
.
Cancer Cell
.
2017
;
31
(
4
):
487
-
500
.
55.
Bejar
R
,
Lord
A
,
Stevenson
K
, et al
.
TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients
.
Blood
.
2014
;
124
(
17
):
2705
-
2712
.
56.
Voso
MT
,
Fabiani
E
,
Piciocchi
A
, et al
.
Role of BCL2L10 methylation and TET2 mutations in higher risk myelodysplastic syndromes treated with 5-azacytidine
.
Leukemia
.
2011
;
25
(
12
):
1910
-
1913
.
57.
Itzykson
R
,
Kosmider
O
,
Cluzeau
T
, et al;
Groupe Francophone des Myelodysplasies (GFM)
.
Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias
.
Leukemia
.
2011
;
25
(
7
):
1147
-
1152
.
58.
Jung
SH
,
Kim
YJ
,
Yim
SH
, et al
.
Somatic mutations predict outcomes of hypomethylating therapy in patients with myelodysplastic syndrome
.
Oncotarget
.
2016
;
7
(
34
):
55264
-
55275
.
59.
Roulois
D
,
Loo Yau
H
,
Singhania
R
, et al
.
DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts
.
Cell
.
2015
;
162
(
5
):
961
-
973
.
60.
Chiappinelli
KB
,
Strissel
PL
,
Desrichard
A
, et al
.
Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses [correction in Cell. 2017;169(2):P361 and Cell. 2016;164(5):P1073]
.
Cell
.
2015
;
162
(
5
):
974
-
986
.
61.
Bannert
N
,
Hofmann
H
,
Block
A
,
Hohn
O
.
HERVs new role in cancer: from accused perpetrators to cheerful protectors
.
Front Microbiol
.
2018
;
9
:
178
.
62.
Treger
RS
,
Pope
SD
,
Kong
Y
, et al
.
The lupus susceptibility locus Sgp3 encodes the suppressor of endogenous retrovirus expression SNERV
.
Immunity
.
2019
;
50
(
2
):
334
-
347
.
63.
Meisel
M
,
Hinterleitner
R
,
Pacis
A
, et al
.
Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host
.
Nature
.
2018
;
557
(
7706
):
580
-
584
.
64.
Carty
SA
,
Gohil
M
,
Banks
LB
, et al
.
The loss of TET2 promotes CD8+ T cell memory differentiation
.
J Immunol
.
2018
;
200
(
1
):
82
-
91
.
65.
Tyrakis
PA
,
Palazon
A
,
Macias
D
, et al
.
S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate
.
Nature
.
2016
;
540
(
7632
):
236
-
241
.
66.
Fraietta
JA
,
Nobles
CL
,
Sammons
MA
, et al
.
Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells
.
Nature
.
2018
;
558
(
7709
):
307
-
312
.
67.
Ostuni
R
,
Kratochvill
F
,
Murray
PJ
,
Natoli
G
.
Macrophages and cancer: from mechanisms to therapeutic implications
.
Trends Immunol
.
2015
;
36
(
4
):
229
-
239
.
68.
Marvel
D
,
Gabrilovich
DI
.
Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected
.
J Clin Invest
.
2015
;
125
(
9
):
3356
-
3364
.
69.
Pan
W
,
Zhu
S
,
Qu
K
, et al
.
The DNA methylcytosine dioxygenase Tet2 sustains immunosuppressive function of tumor-infiltrating myeloid cells to promote melanoma progression
.
Immunity
.
2017
;
47
(
2
):
284
-
297
.
70.
Magrì
A
,
Germano
G
,
Lorenzato
A
, et al
.
High-dose vitamin C enhances cancer immunotherapy
.
Sci Transl Med
.
2020
;
12
(
532
):
eaay8707
.
71.
Luchtel
RA
,
Bhagat
T
,
Pradhan
K
, et al
.
High-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse model
.
Proc Natl Acad Sci USA
.
2020
;
117
(
3
):
1666
-
1677
.
72.
Xu
YP
,
Lv
L
,
Liu
Y
, et al
.
Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy
.
J Clin Invest
.
2019
;
129
(
10
):
4316
-
4331
.
73.
Togashi
Y
,
Shitara
K
,
Nishikawa
H
.
Regulatory T cells in cancer immunosuppression - implications for anticancer therapy
.
Nat Rev Clin Oncol
.
2019
;
16
(
6
):
356
-
371
.
74.
Yang
R
,
Qu
C
,
Zhou
Y
, et al
.
Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis
.
Immunity
.
2015
;
43
(
2
):
251
-
263
.
75.
Toker
A
,
Huehn
J
.
To be or not to be a Treg cell: lineage decisions controlled by epigenetic mechanisms
.
Sci Signal
.
2011
;
4
(
158
):
pe4
.
76.
Zheng
Y
,
Josefowicz
S
,
Chaudhry
A
,
Peng
XP
,
Forbush
K
,
Rudensky
AY
.
Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate
.
Nature
.
2010
;
463
(
7282
):
808
-
812
.
77.
Yue
X
,
Lio
CJ
,
Samaniego-Castruita
D
,
Li
X
,
Rao
A
.
Loss of TET2 and TET3 in regulatory T cells unleashes effector function
.
Nat Commun
.
2019
;
10
(
1
):
2011
.
78.
Nakatsukasa
H
,
Oda
M
,
Yin
J
, et al
.
Loss of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3 destabilization and IL-17 expression
.
Int Immunol
.
2019
;
31
(
5
):
335
-
347
.
79.
Sasidharan Nair
V
,
Song
MH
,
Oh
KI
,
Vitamin
C
.
Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner
.
J Immunol
.
2016
;
196
(
5
):
2119
-
2131
.
80.
Webster
KE
,
Walters
S
,
Kohler
RE
, et al
.
In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression
.
J Exp Med
.
2009
;
206
(
4
):
751
-
760
.
81.
Raffin
C
,
Vo
LT
,
Bluestone
JA
.
Treg cell-based therapies: challenges and perspectives
.
Nat Rev Immunol
.
2020
;
20
(
3
):
158
-
172
.
82.
Nikolouli
E
,
Hardtke-Wolenski
M
,
Hapke
M
, et al
.
Alloantigen-induced regulatory T cells generated in presence of vitamin C display enhanced stability of Foxp3 expression and promote skin allograft acceptance
.
Front Immunol
.
2017
;
8
:
748
.
83.
Kasahara
H
,
Kondo
T
,
Nakatsukasa
H
, et al
.
Generation of allo-antigen-specific induced Treg stabilized by vitamin C treatment and its application for prevention of acute graft versus host disease model
.
Int Immunol
.
2017
;
29
(
10
):
457
-
469
.
You do not currently have access to this content.