Key Points

  • In vivo metabolic dependencies of malignant (vs normal counterpart) cells can be defined by ex vivo screening.

  • Aldh3a2 is synthetically lethal with GPX4 inhibition, providing a combination therapy approach based solely on metabolic state.

Abstract

Metabolic alterations in cancer represent convergent effects of oncogenic mutations. We hypothesized that a metabolism-restricted genetic screen, comparing normal primary mouse hematopoietic cells and their malignant counterparts in an ex vivo system mimicking the bone marrow microenvironment, would define distinctive vulnerabilities in acute myeloid leukemia (AML). Leukemic cells, but not their normal myeloid counterparts, depended on the aldehyde dehydrogenase 3a2 (Aldh3a2) enzyme that oxidizes long-chain aliphatic aldehydes to prevent cellular oxidative damage. Aldehydes are by-products of increased oxidative phosphorylation and nucleotide synthesis in cancer and are generated from lipid peroxides underlying the non–caspase-dependent form of cell death, ferroptosis. Leukemic cell dependence on Aldh3a2 was seen across multiple mouse and human myeloid leukemias. Aldh3a2 inhibition was synthetically lethal with glutathione peroxidase-4 (GPX4) inhibition; GPX4 inhibition is a known trigger of ferroptosis that by itself minimally affects AML cells. Inhibiting Aldh3a2 provides a therapeutic opportunity and a unique synthetic lethality to exploit the distinctive metabolic state of malignant cells.

REFERENCES

REFERENCES
1.
Sancho
P
,
Barneda
D
,
Heeschen
C
.
Hallmarks of cancer stem cell metabolism
.
Br J Cancer
.
2016
;
114
(
12
):
1305
-
1312
.
2.
Vander Heiden
MG
,
Cantley
LC
,
Thompson
CB
.
Understanding the Warburg effect: the metabolic requirements of cell proliferation
.
Science
.
2009
;
324
(
5930
):
1029
-
1033
.
3.
Eppert
K
,
Takenaka
K
,
Lechman
ER
, et al
.
Stem cell gene expression programs influence clinical outcome in human leukemia
.
Nat Med
.
2011
;
17
(
9
):
1086
-
1093
.
4.
Gentles
AJ
,
Plevritis
SK
,
Majeti
R
,
Alizadeh
AA
.
Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia
.
JAMA
.
2010
;
304
(
24
):
2706
-
2715
.
5.
Grubovikj
RM
,
Alavi
A
,
Koppel
A
,
Territo
M
,
Schiller
GJ
.
Minimal residual disease as a predictive factor for relapse after allogeneic hematopoietic stem cell transplant in adult patients with acute myeloid leukemia in first and second complete remission
.
Cancers (Basel)
.
2012
;
4
(
2
):
601
-
617
.
6.
Ho
TC
,
LaMere
M
,
Stevens
BM
, et al
.
Evolution of acute myelogenous leukemia stem cell properties after treatment and progression
.
Blood
.
2016
;
128
(
13
):
1671
-
1678
.
7.
Pollyea
DA
,
Jordan
CT
.
Therapeutic targeting of acute myeloid leukemia stem cells
.
Blood
.
2017
;
129
(
12
):
1627
-
1635
.
8.
Jones
CL
,
Stevens
BM
,
D’Alessandro
A
, et al
.
Inhibition of amino acid metabolism selectively targets human leukemia stem cells [published correction appears in Cancer Cell. 2019;35(2):333-335]
.
Cancer Cell
.
2019
;
35
(
2
):
333
-
335
.
9.
Pei
S
,
Minhajuddin
M
,
Adane
B
, et al
.
AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells
.
Cell Stem Cell
.
2018
;
23
(
1
):
86
-
100.e6
.
10.
Wang
YH
,
Israelsen
WJ
,
Lee
D
, et al
.
Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis
.
Cell
.
2014
;
158
(
6
):
1309
-
1323
.
11.
Adane
B
,
Ye
H
,
Khan
N
, et al
.
The hematopoietic oxidase NOX2 regulates self-renewal of leukemic stem cells
.
Cell Rep
.
2019
;
27
(
1
):
238
-
254.e6
.
12.
Kuntz
EM
,
Baquero
P
,
Michie
AM
, et al
.
Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells
.
Nat Med
.
2017
;
23
(
10
):
1234
-
1240
.
13.
Lagadinou
ED
,
Sach
A
,
Callahan
K
, et al
.
BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
.
Cell Stem Cell
.
2013
;
12
(
3
):
329
-
341
.
14.
Sykes
DB
,
Kfoury
YS
,
Mercier
FE
, et al
.
Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia
.
Cell
.
2016
;
167
(
1
):
171
-
186.e15
.
15.
Vangapandu
HV
,
Ayres
ML
,
Bristow
CA
, et al
.
The stromal microenvironment modulates mitochondrial oxidative phosphorylation in chronic lymphocytic leukemia cells
.
Neoplasia
.
2017
;
19
(
10
):
762
-
771
.
16.
Hangauer
MJ
,
Viswanathan
VS
,
Ryan
MJ
, et al
.
Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition
.
Nature
.
2017
;
551
(
7679
):
247
-
250
.
17.
Viswanathan
VS
,
Ryan
MJ
,
Dhruv
HD
, et al
.
Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway
.
Nature
.
2017
;
547
(
7664
):
453
-
457
.
18.
Kastrinaki
MC
,
Andreakou
I
,
Charbord
P
,
Papadaki
HA
.
Isolation of human bone marrow mesenchymal stem cells using different membrane markers: comparison of colony/cloning efficiency, differentiation potential, and molecular profile
.
Tissue Eng Part C Methods
.
2008
;
14
(
4
):
333
-
339
.
19.
Kamentsky
L
,
Jones
TR
,
Fraser
A
, et al
.
Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software
.
Bioinformatics
.
2011
;
27
(
8
):
1179
-
1180
.
20.
Zuber
J
,
Radtke
I
,
Pardee
TS
, et al
.
Mouse models of human AML accurately predict chemotherapy response
.
Genes Dev
.
2009
;
23
(
7
):
877
-
889
.
21.
Saez
B
,
Ferraro
F
,
Yusuf
RZ
, et al
.
Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning
.
Blood
.
2014
;
124
(
19
):
2937
-
2947
.
22.
Kelson
TL
,
Secor McVoy
JR
,
Rizzo
WB
.
Human liver fatty aldehyde dehydrogenase: microsomal localization, purification, and biochemical characterization
.
Biochim Biophys Acta
.
1997
;
1335
(
1-2
):
99
-
110
.
23.
Rizzo
WB
,
Craft
DA
.
Sjögren-Larsson syndrome. Deficient activity of the fatty aldehyde dehydrogenase component of fatty alcohol:NAD+ oxidoreductase in cultured fibroblasts
.
J Clin Invest
.
1991
;
88
(
5
):
1643
-
1648
.
24.
Rizzo
WB
,
Watkins
PA
,
Phillips
MW
,
Cranin
D
,
Campbell
B
,
Avigan
J
.
Adrenoleukodystrophy: oleic acid lowers fibroblast saturated C22-26 fatty acids
.
Neurology
.
1986
;
36
(
3
):
357
-
361
.
25.
Krivtsov
AV
,
Twomey
D
,
Feng
Z
, et al
.
Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9
.
Nature
.
2006
;
442
(
7104
):
818
-
822
.
26.
Nelson
DL
,
Cox
MM
.
Lehninger Principles of Biochemistry
. 5th ed.
New York, NY
:
WH Freeman and Co
;
2008
.
27.
Moffat
J
,
Grueneberg
DA
,
Yang
X
, et al
.
A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen
.
Cell
.
2006
;
124
(
6
):
1283
-
1298
.
28.
German
NJ
,
Yoon
H
,
Yusuf
RZ
, et al
.
PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2
.
Mol Cell
.
2016
;
63
(
6
):
1006
-
1020
.
29.
Ito
K
,
Carracedo
A
,
Weiss
D
, et al
.
A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
.
Nat Med
.
2012
;
18
(
9
):
1350
-
1358
.
30.
Gasparetto
M
,
Smith
CA
.
ALDHs in normal and malignant hematopoietic cells: Potential new avenues for treatment of AML and other blood cancers
.
Chem Biol Interact
.
2017
;
276
:
46
-
51
.
31.
Muramoto
GG
,
Russell
JL
,
Safi
R
, et al
.
Inhibition of aldehyde dehydrogenase expands hematopoietic stem cells with radioprotective capacity
.
Stem Cells
.
2010
;
28
(
3
):
523
-
534
.
32.
Metzeler
KH
,
Hummel
M
,
Bloomfield
CD
, et al;
German AML Cooperative Group
.
An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia
.
Blood
.
2008
;
112
(
10
):
4193
-
4201
.
33.
Singh
S
,
Brocker
C
,
Koppaka
V
, et al
.
Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress
.
Free Radic Biol Med
.
2013
;
56
:
89
-
101
.
34.
Rizzo
WB
,
Craft
DA
.
Sjögren-Larsson syndrome: accumulation of free fatty alcohols in cultured fibroblasts and plasma
.
J Lipid Res
.
2000
;
41
(
7
):
1077
-
1081
.
35.
Yang
WS
,
Kim
KJ
,
Gaschler
MM
,
Patel
M
,
Shchepinov
MS
,
Stockwell
BR
.
Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
.
Proc Natl Acad Sci USA
.
2016
;
113
(
34
):
E4966
-
E4975
.
36.
Magtanong
L
,
Ko
PJ
,
To
M
, et al
.
Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state
.
Cell Chem Biol
.
2019
;
26
(
3
):
420
-
432.e9
.
37.
Dixon
SJ
,
Lemberg
KM
,
Lamprecht
MR
, et al
.
Ferroptosis: an iron-dependent form of nonapoptotic cell death
.
Cell
.
2012
;
149
(
5
):
1060
-
1072
.
38.
Rizzo
WB
.
Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function
.
Biochim Biophys Acta
.
2014
;
1841
(
3
):
377
-
389
.
39.
Yu
Y
,
Xie
Y
,
Cao
L
, et al
.
The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents
.
Mol Cell Oncol
.
2015
;
2
(
4
):
e1054549
.
You do not currently have access to this content.