Abstract

Congenital dyserythropoietic anemias (CDAs) are a heterogeneous group of inherited anemias that affect the normal differentiation–proliferation pathways of the erythroid lineage. They belong to the wide group of ineffective erythropoiesis conditions that mainly result in monolinear cytopenia. CDAs are classified into the 3 major types (I, II, III), plus the transcription factor-related CDAs, and the CDA variants, on the basis of the distinctive morphological, clinical, and genetic features. Next-generation sequencing has revolutionized the field of diagnosis of and research into CDAs, with reduced time to diagnosis, and ameliorated differential diagnosis in terms of identification of new causative/modifier genes and polygenic conditions. The main improvements regarding CDAs have been in the study of iron metabolism in CDAII. The erythroblast-derived hormone erythroferrone specifically inhibits hepcidin production, and its role in the mediation of hepatic iron overload has been dissected out. We discuss here the most recent advances in this field regarding the molecular genetics and pathogenic mechanisms of CDAs, through an analysis of the clinical and molecular classifications, and the complications and clinical management of patients. We summarize also the main cellular and animal models developed to date and the possible future therapies.

REFERENCES

REFERENCES
1.
Iolascon
A
,
Esposito
MR
,
Russo
R
.
Clinical aspects and pathogenesis of congenital dyserythropoietic anemias: from morphology to molecular approach
.
Haematologica
.
2012
;
97
(
12
):
1786
-
1794
.
2.
Iolascon
A
,
Heimpel
H
,
Wahlin
A
,
Tamary
H
.
Congenital dyserythropoietic anemias: molecular insights and diagnostic approach
.
Blood
.
2013
;
122
(
13
):
2162
-
2166
.
3.
Gambale
A
,
Iolascon
A
,
Andolfo
I
,
Russo
R
.
Diagnosis and management of congenital dyserythropoietic anemias
.
Expert Rev Hematol
.
2016
;
9
(
3
):
283
-
296
.
4.
Roy
NBA
,
Babbs
C
.
The pathogenesis, diagnosis and management of CDA type I
.
Br J Haematol
.
2019
;
185
(
3
):
436
-
449
.
5.
Amir
AZ
,
Horev
G
,
Yacobovich
J
,
Bennett
M
,
Tamary
H
.
Distal limb anomalies in patients with congenital dyserythropoietic anemia
.
Am J Med Genet A
.
2017
;
173
(
2
):
487
-
490
.
6.
Heimpel
H
,
Kellermann
K
,
Neuschwander
N
,
Högel
J
,
Schwarz
K
.
The morphological diagnosis of congenital dyserythropoietic anemia: results of a quantitative analysis of peripheral blood and bone marrow cells
.
Haematologica
.
2010
;
95
(
6
):
1034
-
1036
.
7.
Resnitzky
P
,
Shaft
D
,
Shalev
H
, et al
.
Morphological features of congenital dyserythropoietic anemia type I: The role of electron microscopy in diagnosis
.
Eur J Haematol
.
2017
;
99
(
4
):
366
-
371
.
8.
Babbs
C
,
Roberts
NA
,
Sanchez-Pulido
L
, et al;
WGS500 Consortium
.
Homozygous mutations in a predicted endonuclease are a novel cause of congenital dyserythropoietic anemia type I
.
Haematologica
.
2013
;
98
(
9
):
1383
-
1387
.
9.
Palmblad
J
,
Sander
B
,
Bain
B
,
Klimkowska
M
,
Björck
E
.
Congenital dyserythropoietic anemia type 1: a case with novel compound heterozygous mutations in the C15orf41 gene
.
Am J Hematol
.
2018
;
93
(
8
):
E213
-
E215
.
10.
Russo
R
,
Marra
R
,
Andolfo
I
, et al
.
Characterization of two cases of congenital dyserythropoietic anemia type I shed light on the uncharacterized C15orf41 protein
.
Front Physiol
.
2019
;
10
:
621
.
11.
Dgany
O
,
Avidan
N
,
Delaunay
J
, et al
.
Congenital dyserythropoietic anemia type I is caused by mutations in codanin-1
.
Am J Hum Genet
.
2002
;
71
(
6
):
1467
-
1474
.
12.
Noy-Lotan
S
,
Dgany
O
,
Lahmi
R
, et al
.
Codanin-1, the protein encoded by the gene mutated in congenital dyserythropoietic anemia type I (CDAN1), is cell cycle-regulated
.
Haematologica
.
2009
;
94
(
5
):
629
-
637
.
13.
Ask
K
,
Jasencakova
Z
,
Menard
P
,
Feng
Y
,
Almouzni
G
,
Groth
A
.
Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply
.
EMBO J
.
2012
;
31
(
8
):
2013
-
2023
.
14.
Ewing
RM
,
Chu
P
,
Elisma
F
, et al
.
Large-scale mapping of human protein-protein interactions by mass spectrometry
.
Mol Syst Biol
.
2007
;
3
(
1
):
89
.
15.
Heimpel
H
,
Matuschek
A
,
Ahmed
M
, et al
.
Frequency of congenital dyserythropoietic anemias in Europe
.
Eur J Haematol
.
2010
;
85
(
1
):
20
-
25
.
16.
Fermo
E
,
Bianchi
P
,
Notarangelo
LD
, et al
.
CDAII presenting as hydrops foetalis: molecular characterization of two cases
.
Blood Cells Mol Dis
.
2010
;
45
(
1
):
20
-
22
.
17.
Russo
R
,
Gambale
A
,
Langella
C
,
Andolfo
I
,
Unal
S
,
Iolascon
A
.
Retrospective cohort study of 205 cases with congenital dyserythropoietic anemia type II: definition of clinical and molecular spectrum and identification of new diagnostic scores
.
Am J Hematol
.
2014
;
89
(
10
):
E169
-
E175
.
18.
Bianchi
P
,
Schwarz
K
,
Högel
J
, et al
.
Analysis of a cohort of 101 CDAII patients: description of 24 new molecular variants and genotype-phenotype correlations
.
Br J Haematol
.
2016
;
175
(
4
):
696
-
704
.
19.
Schwarz
K
,
Iolascon
A
,
Verissimo
F
, et al
.
Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II
.
Nat Genet
.
2009
;
41
(
8
):
936
-
940
.
20.
Bianchi
P
,
Fermo
E
,
Vercellati
C
, et al
.
Congenital dyserythropoietic anemia type II (CDAII) is caused by mutations in the SEC23B gene
.
Hum Mutat
.
2009
;
30
(
9
):
1292
-
1298
.
21.
Iolascon
A
,
Russo
R
,
Delaunay
J
.
Congenital dyserythropoietic anemias
.
Curr Opin Hematol
.
2011
;
18
(
3
):
146
-
151
.
22.
Amir
A
,
Dgany
O
,
Krasnov
T
, et al
.
E109K is a SEC23B founder mutation among Israeli Moroccan Jewish patients with congenital dyserythropoietic anemia type II
.
Acta Haematol
.
2011
;
125
(
4
):
202
-
207
.
23.
Russo
R
,
Gambale
A
,
Esposito
MR
, et al
.
Two founder mutations in the SEC23B gene account for the relatively high frequency of CDA II in the Italian population
.
Am J Hematol
.
2011
;
86
(
9
):
727
-
732
.
24.
Singleton
B
,
Bansal
D
,
Varma
N
, et al
.
Homozygosity mapping reveals founder SEC23B-Y462C mutations in Indian congenital dyserythropoietic anemia type II
.
Clin Genet
.
2015
;
88
(
2
):
195
-
197
.
25.
Russo
R
,
Esposito
MR
,
Iolascon
A
.
Inherited hematological disorders due to defects in coat protein (COP)II complex
.
Am J Hematol
.
2013
;
88
(
2
):
135
-
140
.
26.
Satchwell
TJ
,
Pellegrin
S
,
Bianchi
P
, et al
.
Characteristic phenotypes associated with congenital dyserythropoietic anemia (type II) manifest at different stages of erythropoiesis
.
Haematologica
.
2013
;
98
(
11
):
1788
-
1796
.
27.
Ishihara
N
,
Hamasaki
M
,
Yokota
S
, et al
.
Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion
.
Mol Biol Cell
.
2001
;
12
(
11
):
3690
-
3702
.
28.
Griffiths
RE
,
Kupzig
S
,
Cogan
N
, et al
.
Maturing reticulocytes internalize plasma membrane in glycophorin A-containing vesicles that fuse with autophagosomes before exocytosis
.
Blood
.
2012
;
119
(
26
):
6296
-
6306
.
29.
Jeong
YT
,
Simoneschi
D
,
Keegan
S
, et al
.
The ULK1-FBXW5-SEC23B nexus controls autophagy
.
eLife
.
2018
;
7
:
e42253
.
30.
Liljeholm
M
,
Irvine
AF
,
Vikberg
AL
, et al
.
Congenital dyserythropoietic anemia type III (CDA III) is caused by a mutation in kinesin family member, KIF23
.
Blood
.
2013
;
121
(
23
):
4791
-
4799
.
31.
Traxler
E
,
Weiss
MJ
.
Congenital dyserythropoietic anemias: III’s a charm
.
Blood
.
2013
;
121
(
23
):
4614
-
4615
.
32.
Arnaud
L
,
Saison
C
,
Helias
V
, et al
.
A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia
.
Am J Hum Genet
.
2010
;
87
(
5
):
721
-
727
.
33.
Jaffray
JA
,
Mitchell
WB
,
Gnanapragasam
MN
, et al
.
Erythroid transcription factor EKLF/KLF1 mutation causing congenital dyserythropoietic anemia type IV in a patient of Taiwanese origin: review of all reported cases and development of a clinical diagnostic paradigm
.
Blood Cells Mol Dis
.
2013
;
51
(
2
):
71
-
75
.
34.
de-la-Iglesia-Iñigo
S
,
Moreno-Carralero
MI
,
Lemes-Castellano
A
,
Molero-Labarta
T
,
Méndez
M
,
Morán-Jiménez
MJ
.
A case of congenital dyserythropoietic anemia type IV
.
Clin Case Rep
.
2017
;
5
(
3
):
248
-
252
.
35.
Ortolano
R
,
Forouhar
M
,
Warwick
A
,
Harper
D
.
A case of congenital dyserythropoeitic anemia type IV caused by E325K mutation in erythroid transcription factor KLF1
.
J Pediatr Hematol Oncol
.
2018
;
40
(
6
):
e389
-
e391
.
36.
Ravindranath
Y
,
Johnson
RM
,
Goyette
G
,
Buck
S
,
Gadgeel
M
,
Gallagher
PG
.
KLF1 E325K-associated congenital dyserythropoietic anemia type IV: insights into the variable clinical severity
.
J Pediatr Hematol Oncol
.
2018
;
40
(
6
):
e405
-
e409
.
37.
Russo
R
,
Andolfo
I
,
Manna
F
, et al
.
Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias
.
Am J Hematol
.
2018
;
93
(
5
):
672
-
682
.
38.
Kohara
H
,
Utsugisawa
T
,
Sakamoto
C
, et al
.
KLF1 mutation E325K induces cell cycle arrest in erythroid cells differentiated from congenital dyserythropoietic anemia patient-specific induced pluripotent stem cells
.
Exp Hematol
.
2019
;
73
:
25
-
37.e8
.
39.
Siatecka
M
,
Bieker
JJ
.
The multifunctional role of EKLF/KLF1 during erythropoiesis
.
Blood
.
2011
;
118
(
8
):
2044
-
2054
.
40.
Varricchio
L
,
Planutis
A
,
Manwani
D
, et al
.
Genetic disarray follows mutant KLF1-E325K expression in a congenital dyserythropoietic anemia patient
.
Haematologica
.
2019
;
104
(
12
):
2372
-
2380
.
41.
Shimizu
R
,
Yamamoto
M
.
GATA-related hematologic disorders
.
Exp Hematol
.
2016
;
44
(
8
):
696
-
705
.
42.
Crispino
JD
,
Horwitz
MS
.
GATA factor mutations in hematologic disease
.
Blood
.
2017
;
129
(
15
):
2103
-
2110
.
43.
Dührsen
U
,
Kratz
CP
,
Flotho
C
, et al
.
Long-term outcome of hemizygous and heterozygous carriers of a germline GATA1 (G208R) mutation
.
Ann Hematol
.
2011
;
90
(
3
):
301
-
306
.
44.
Di Pierro
E
,
Russo
R
,
Karakas
Z
, et al
.
Congenital erythropoietic porphyria linked to GATA1-R216W mutation: challenges for diagnosis
.
Eur J Haematol
.
2015
;
94
(
6
):
491
-
497
.
45.
Pereira
J
,
Bento
C
,
Manco
L
,
Gonzalez
A
,
Vagace
J
,
Ribeiro
ML
.
Congenital dyserythropoietic anemia associated to a GATA1 mutation aggravated by pyruvate kinase deficiency
.
Ann Hematol
.
2016
;
95
(
9
):
1551
-
1553
.
46.
Russo
R
,
Andolfo
I
,
Gambale
A
, et al
.
GATA1 erythroid-specific regulation of SEC23B expression and its implication in the pathogenesis of congenital dyserythropoietic anemia type II
.
Haematologica
.
2017
;
102
(
9
):
e371
-
e374
.
47.
Sankaran
VG
,
Ulirsch
JC
,
Tchaikovskii
V
, et al
.
X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation
.
J Clin Invest
.
2015
;
125
(
4
):
1665
-
1669
.
48.
Moreno-Carralero
MI
,
Horta-Herrera
S
,
Morado-Arias
M
, et al
.
Clinical and genetic features of congenital dyserythropoietic anemia (CDA)
.
Eur J Haematol
.
2018
;
101
(
3
):
368
-
378
.
49.
Rao
AP
,
Gopalakrishna
DB
,
Bing
X
,
Ferguson
PJ
.
Phenotypic variability in Majeed syndrome
.
J Rheumatol
.
2016
;
43
(
6
):
1258
-
1259
.
50.
Ferguson
PJ
,
Chen
S
,
Tayeh
MK
, et al
.
Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome)
.
J Med Genet
.
2005
;
42
(
7
):
551
-
557
.
51.
Roy
NBA
,
Zaal
AI
,
Hall
G
, et al
.
Majeed syndrome: description of a novel mutation and therapeutic response to bisphosphonates and IL-1 blockade with anakinra
.
Rheumatology
.
2019
;
59
(
2
):
448
-
451
.
52.
Russo
R
,
Marra
R
,
Andolfo
I
, et al
.
Uridine treatment restores the CDA II-like hematological phenotype in a patient with homozygous mutation in the CAD gene [published online ahead of print 28 July 2020]
.
Am J Hematol
.
doi:10.1002/ajh.25946
.
53.
Koch
J
,
Mayr
JA
,
Alhaddad
B
, et al
.
CAD mutations and uridine-responsive epileptic encephalopathy
.
Brain
.
2017
;
140
(
2
):
279
-
286
.
54.
Shteyer
E
,
Saada
A
,
Shaag
A
, et al
.
Exocrine pancreatic insufficiency, dyserythropoeitic anemia, and calvarial hyperostosis are caused by a mutation in the COX4I2 gene
.
Am J Hum Genet
.
2009
;
84
(
3
):
412
-
417
.
55.
Denecke
J
,
Marquardt
T
.
Congenital dyserythropoietic anemia type II (CDAII/HEMPAS): where are we now?
Biochim Biophys Acta
.
2009
;
1792
(
9
):
915
-
920
.
56.
Samkari
A
,
Borzutzky
A
,
Fermo
E
,
Treaba
DO
,
Dedeoglu
F
,
Altura
RA
.
A novel missense mutation in MVK associated with MK deficiency and dyserythropoietic anemia
.
Pediatrics
.
2010
;
125
(
4
):
e964
-
e968
.
57.
Bianchi
P
,
Fermo
E
,
Eng
JC
, et al
.
Biallelic mutations in PARP4 are linked to a variant form of congenital dyserythropoietic anemia [abstract]
.
Blood
.
2015
;
126
(
23
).
Abstract 101
.
58.
Giger
K
,
Christakopoulos
GE
,
Trump
L
, et al
.
VPS4A: a novel candidate gene for congenital dyserythropoietic anemia [abstract]
.
Blood
.
2017
;
130
(
suppl 1
).
Abstract 101
.
59.
Emberesh
M
,
Seu
KG
,
Emberesh
S
, et al
.
Peroxiredoxin II (PRDX2) is a novel candidate gene for congenital dyserythropoietic anemia [abstract]
.
Blood
.
2018
;
132
(
suppl 1
).
Abstract 101
.
60.
Russo
R
,
Andolfo
I
,
Manna
F
, et al
.
Increased levels of ERFE-encoding FAM132B in patients with congenital dyserythropoietic anemia type II
.
Blood
.
2016
;
128
(
14
):
1899
-
1902
.
61.
Khoriaty
R
,
Everett
L
,
Chase
J
, et al
.
Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice
.
Sci Rep
.
2016
;
6
(
1
):
27802
.
62.
Khoriaty
R
,
Vogel
N
,
Hoenerhoff
MJ
, et al
.
SEC23B is required for pancreatic acinar cell function in adult mice
.
Mol Biol Cell
.
2017
;
28
(
15
):
2146
-
2154
.
63.
Tao
J
,
Zhu
M
,
Wang
H
, et al
.
SEC23B is required for the maintenance of murine professional secretory tissues
.
Proc Natl Acad Sci USA
.
2012
;
109
(
29
):
E2001
-
E2009
.
64.
Khoriaty
R
,
Vasievich
MP
,
Jones
M
, et al
.
Absence of a red blood cell phenotype in mice with hematopoietic deficiency of SEC23B
.
Mol Cell Biol
.
2014
;
34
(
19
):
3721
-
3734
.
65.
Russo
R
,
Langella
C
,
Esposito
MR
, et al
.
Hypomorphic mutations of SEC23B gene account for mild phenotypes of congenital dyserythropoietic anemia type II
.
Blood Cells Mol Dis
.
2013
;
51
(
1
):
17
-
21
.
66.
Khoriaty
R
,
Hesketh
GG
,
Bernard
A
, et al
.
Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo
.
Proc Natl Acad Sci USA
.
2018
;
115
(
33
):
E7748
-
E7757
.
67.
Renella
R
,
Roberts
NA
,
Sharpe
JA
, et al
.
A transgenic mouse model for congenital dyserythropoietic anemia type I
.
Blood
.
2008
;
112
(
11
):
3455
.
68.
Moir-Meyer
G
,
Cheong
PL
,
Olijnik
AA
, et al
.
Robust CRISPR/Cas9 genome editing of the HUDEP-2 erythroid precursor line using plasmids and single-stranded oligonucleotide donors
.
Methods Protoc
.
2018
;
1
(
3
):
28
.
69.
Andolfo
I
,
Russo
R
,
Rosato
BE
, et al
.
Genotype-phenotype correlation and risk stratification in a cohort of 123 hereditary stomatocytosis patients
.
Am J Hematol
.
2018
;
93
(
12
):
1509
-
1517
.
70.
Singleton
BK
,
Ahmed
M
,
Green
CA
, et al
.
CD44 as a potential screening marker for preliminary differentiation between congenital dyserythropoietic anemia type II and hereditary spherocytosis
.
Cytometry B Clin Cytom
.
2018
;
94
(
2
):
312
-
326
.
71.
Zaninoni
A
,
Fermo
E
,
Vercellati
C
, et al
.
Use of laser-assisted optical rotational cell analyzer (LoRRca MaxSis) in the diagnosis of RBC membrane disorders, enzyme defects, and congenital dyserythropoietic anemias: a monocentric study on 202 patients
.
Front Physiol
.
2018
;
9
:
451
.
72.
Mugnano
M
,
Memmolo
P
,
Miccio
L
, et al
.
Label-free optical marker for red-blood-cell phenotyping of inherited anemias
.
Anal Chem
.
2018
;
90
(
12
):
7495
-
7501
.
73.
Roy
NB
,
Wilson
EA
,
Henderson
S
, et al
.
A novel 33-Gene targeted resequencing panel provides accurate, clinical-grade diagnosis and improves patient management for rare inherited anaemias
.
Br J Haematol
.
2016
;
175
(
2
):
318
-
330
.
74.
Hamada
M
,
Doisaki
S
,
Okuno
Y
, et al
.
Whole-exome analysis to detect congenital hemolytic anemia mimicking congenital dyserythropoietic anemia
.
Int J Hematol
.
2018
;
108
(
3
):
306
-
311
.
75.
Shefer Averbuch
N
,
Steinberg-Shemer
O
,
Dgany
O
, et al
.
Targeted next generation sequencing for the diagnosis of patients with rare congenital anemias
.
Eur J Haematol
.
2018
;
101
(
3
):
297
-
304
.
76.
Liu
G
,
Niu
S
,
Dong
A
, et al
.
A Chinese family carrying novel mutations in SEC23B and HFE2, the genes responsible for congenital dyserythropoietic anaemia II (CDA II) and primary iron overload, respectively
.
Br J Haematol
.
2012
;
158
(
1
):
143
-
145
.
77.
Tanno
T
,
Bhanu
NV
,
Oneal
PA
, et al
.
High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin
.
Nat Med
.
2007
;
13
(
9
):
1096
-
1101
.
78.
Tamary
H
,
Shalev
H
,
Perez-Avraham
G
, et al
.
Elevated growth differentiation factor 15 expression in patients with congenital dyserythropoietic anemia type I
.
Blood
.
2008
;
112
(
13
):
5241
-
5244
.
79.
Casanovas
G
,
Swinkels
DW
,
Altamura
S
, et al
.
Growth differentiation factor 15 in patients with congenital dyserythropoietic anaemia (CDA) type II
.
J Mol Med (Berl)
.
2011
;
89
(
8
):
811
-
816
.
80.
Casanovas
G
,
Vujić Spasic
M
,
Casu
C
, et al
.
The murine growth differentiation factor 15 is not essential for systemic iron homeostasis in phlebotomized mice
.
Haematologica
.
2013
;
98
(
3
):
444
-
447
.
81.
Kautz
L
,
Jung
G
,
Valore
EV
,
Rivella
S
,
Nemeth
E
,
Ganz
T
.
Identification of erythroferrone as an erythroid regulator of iron metabolism [published correction appears in Nat Genet. 2020;52(4):463]
.
Nat Genet
.
2014
;
46
(
7
):
678
-
684
.
82.
Andolfo
I
,
Rosato
BE
,
Marra
R
, et al
.
The BMP-SMAD pathway mediates the impaired hepatic iron metabolism associated with the ERFE-A260S variant
.
Am J Hematol
.
2019
;
94
(
11
):
1227
-
1235
.
83.
Nair
V
,
Das
S
,
Sharma
A
.
Hematopoietic stem cell transplantation in children with genetic defects
.
Indian Pediatr
.
2009
;
46
(
3
):
241
-
243
.
84.
Ayas
M
,
al-Jefri
A
,
Baothman
A
, et al
.
Transfusion-dependent congenital dyserythropoietic anemia type I successfully treated with allogeneic stem cell transplantation
.
Bone Marrow Transplant
.
2002
;
29
(
8
):
681
-
682
.
85.
Unal
S
,
Russo
R
,
Gumruk
F
, et al
.
Successful hematopoietic stem cell transplantation in a patient with congenital dyserythropoietic anemia type II
.
Pediatr Transplant
.
2014
;
18
(
4
):
E130
-
E133
.
86.
Modi
G
,
Shah
S
,
Madabhavi
I
, et al
.
Successful allogeneic hematopoietic stem cell transplantation of a patient suffering from type II congenital dyserythropoietic anemia a rare case report from Western India
.
Case Rep Hematol
.
2015
;
2015
:
792485
.
87.
Uygun
V
,
Russo
R
,
Karasu
G
,
Daloğlu
H
,
Iolascon
A
,
Yeşilipek
A
.
Hematopoietic stem cell transplantation in congenital dyserythropetic anemia type II: a case report and review of the literature
.
J Pediatr Hematol Oncol
.
2020
;
42
(
6
):
e507
-
e510
.
88.
Miano
M
,
Eikema
DJ
,
Aljurf
M
, et al
.
Stem cell transplantation for congenital dyserythropoietic anemia: an analysis from the European Society for Blood and Marrow Transplantation
.
Haematologica
.
2019
;
104
(
8
):
e335
-
e339
.
89.
Angelucci
E
,
Barosi
G
,
Camaschella
C
, et al
.
Italian Society of Hematology practice guidelines for the management of iron overload in thalassemia major and related disorders
.
Haematologica
.
2008
;
93
(
5
):
741
-
752
.
90.
Iolascon
A
,
Andolfo
I
,
Barcellini
W
, et al;
Working Study Group on Red Cells and Iron of the EHA
.
Recommendations regarding splenectomy in hereditary hemolytic anemias
.
Haematologica
.
2017
;
102
(
8
):
1304
-
1313
.
91.
Cappellini
MD
,
Porter
J
,
Origa
R
, et al
.
Sotatercept, a novel transforming growth factor β ligand trap, improves anemia in β-thalassemia: a phase II, open-label, dose-finding study
.
Haematologica
.
2019
;
104
(
3
):
477
-
484
.
92.
De Rosa
G
,
Andolfo
I
,
Manna
F
, et al
.
Unraveling the molecular pathogenesis of ineffective erythropoiesis in congenital dyserythropoietic anemia type II: in-vitro evaluation of rap-011 treatment
.
EHA Library
.
2017
;
182098
:
S811
.
93.
Pellegrin
S
,
Haydn-Smith
KL
,
Hampton-O’Neil
LA
, et al
.
Transduction with BBF2H7/CREB3L2 upregulates SEC23A protein in erythroblasts and partially corrects the hypo-glycosylation phenotype associated with CDAII
.
Br J Haematol
.
2019
;
184
(
5
):
876
-
881
.
94.
Tornador
C
,
Sánchez-Prados
E
,
Cadenas
B
, et al
.
CoDysAn: a telemedicine tool to improve awareness and diagnosis for patients with congenital dyserythropoietic anemia
.
Front Physiol
.
2019
;
10
:
1063
.
You do not currently have access to this content.