Abstract

The mature red blood cell (RBC) lacks a nucleus and organelles characteristic of most cells, but it is elegantly structured to perform the essential function of delivering oxygen and removing carbon dioxide from all other cells while enduring the shear stress imposed by navigating small vessels and sinusoids. Over the past several decades, the efforts of biochemists, cell and molecular biologists, and hematologists have provided an appreciation of the complexity of RBC membrane structure, while studies of the RBC membrane disorders have offered valuable insights into structure–function relationships. Within the last decade, advances in genetic testing and its increased availability have made it possible to substantially build upon this foundational knowledge. Although disorders of the RBC membrane due to altered structural organization or altered transport function are heterogeneous, they often present with common clinical findings of hemolytic anemia. However, they may require substantially different management depending on the underlying pathophysiology. Accurate diagnosis is essential to avoid emergence of complications or inappropriate interventions. We propose an algorithm for laboratory evaluation of patients presenting with symptoms and signs of hemolytic anemia with a focus on RBC membrane disorders. Here, we review the genotypic and phenotypic variability of the RBC membrane disorders in order to raise the index of suspicion and highlight the need for correct and timely diagnosis.

REFERENCES

REFERENCES
1.
Lux
SE
,
Palek
J
. Disorders of the red cell membrane. In: Handin RI, Stossel TP, eds. Blood: Principles and Practice of Hematology.
Lippincott
:
Philadelphia, PA
;
1995
.
1701
-
1818
.
2.
Mohandas
N
,
Gallagher
PG
.
Red cell membrane: past, present, and future
.
Blood
.
2008
;
112
(
10
):
3939
-
3948
.
3.
Salomao
M
,
Zhang
X
,
Yang
Y
, et al
.
Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane
.
Proc Natl Acad Sci USA
.
2008
;
105
(
23
):
8026
-
8031
.
4.
Mohandas
N
,
Evans
E
.
Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects
.
Annu Rev Biophys Biomol Struct
.
1994
;
23
(
1
):
787
-
818
.
5.
Sung
LA
,
Vera
C
.
Protofilament and hexagon: a three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton
.
Ann Biomed Eng
.
2003
;
31
(
11
):
1314
-
1326
.
6.
Kalfa
TA
,
Pushkaran
S
,
Mohandas
N
, et al
.
Rac GTPases regulate the morphology and deformability of the erythrocyte cytoskeleton
.
Blood
.
2006
;
108
(
12
):
3637
-
3645
.
7.
Gokhin
DS
,
Fowler
VM
.
Feisty filaments: actin dynamics in the red blood cell membrane skeleton
.
Curr Opin Hematol
.
2016
;
23
(
3
):
206
-
214
.
8.
Burton
NM
,
Bruce
LJ
.
Modelling the structure of the red cell membrane
.
Biochem Cell Biol
.
2011
;
89
(
2
):
200
-
215
.
9.
Bryk
AH
,
Wiśniewski
JR
.
Quantitative analysis of human red blood cell proteome
.
J Proteome Res
.
2017
;
16
(
8
):
2752
-
2761
.
10.
Gautier
EF
,
Leduc
M
,
Cochet
S
, et al
.
Absolute proteome quantification of highly purified populations of circulating reticulocytes and mature erythrocytes
.
Blood Adv
.
2018
;
2
(
20
):
2646
-
2657
.
11.
Lux
SE
IV
.
Anatomy of the red cell membrane skeleton: unanswered questions
.
Blood
.
2016
;
127
(
2
):
187
-
199
.
12.
Mohandas
N
.
Inherited hemolytic anemia: a possessive beginner’s guide
.
Hematology Am Soc Hematol Educ Program
.
2018
;
2018
:
377
-
381
.
13.
Eber
S
,
Lux
SE
.
Hereditary spherocytosis—defects in proteins that connect the membrane skeleton to the lipid bilayer
.
Semin Hematol
.
2004
;
41
(
2
):
118
-
141
.
14.
Gallagher
PG
.
Abnormalities of the erythrocyte membrane
.
Pediatr Clin North Am
.
2013
;
60
(
6
):
1349
-
1362
.
15.
Eber
SW
,
Gonzalez
JM
,
Lux
ML
, et al
.
Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis
.
Nat Genet
.
1996
;
13
(
2
):
214
-
218
.
16.
Gallagher
PG
.
Red cell membrane disorders
.
Hematology Am Soc Hematol Educ Program
.
2005
;
2005
:
13
-
18
.
17.
Iolascon
A
,
Miraglia del Giudice
E
,
Perrotta
S
,
Alloisio
N
,
Morlé
L
,
Delaunay
J
.
Hereditary spherocytosis: from clinical to molecular defects
.
Haematologica
.
1998
;
83
(
3
):
240
-
257
.
18.
Hammill
AM
,
Risinger
MA
,
Joiner
CH
,
Keddache
M
,
Kalfa
TA
.
Compound heterozygosity for two novel mutations in the erythrocyte protein 4.2 gene causing spherocytosis in a Caucasian patient
.
Br J Haematol
.
2011
;
152
(
6
):
780
-
783
.
19.
Kalfa
TA
,
Connor
JA
,
Begtrup
AH
. EPB42-related hereditary spherocytosis. In:
Adam
MP
,
Ardinger
HH
,
Pagon
RA
, eds., et al.
GeneReviews
,
Seattle, WA
:
University of Washington
;
2016
:
20.
Wichterle
H
,
Hanspal
M
,
Palek
J
,
Jarolim
P
.
Combination of two mutant alpha spectrin alleles underlies a severe spherocytic hemolytic anemia
.
J Clin Invest
.
1996
;
98
(
10
):
2300
-
2307
.
21.
Gallagher
PG
,
Maksimova
Y
,
Lezon-Geyda
K
, et al
.
Aberrant splicing contributes to severe α-spectrin-linked congenital hemolytic anemia
.
J Clin Invest
.
2019
;
129
(
7
):
2878
-
2887
.
22.
Chonat
S
,
Risinger
M
,
Sakthivel
H
, et al
.
The spectrum of SPTA1-associated hereditary spherocytosis [published correction appears in Front Physiol. 2019;10:1331]
.
Front Physiol
.
2019
;
10
:
815
.
23.
Becker
PS
,
Tse
WT
,
Lux
SE
,
Forget
BG
.
Beta spectrin kissimmee: a spectrin variant associated with autosomal dominant hereditary spherocytosis and defective binding to protein 4.1
.
J Clin Invest
.
1993
;
92
(
2
):
612
-
616
.
24.
Miraglia del Giudice
E
,
Nobili
B
,
Francese
M
, et al
.
Clinical and molecular evaluation of non-dominant hereditary spherocytosis
.
Br J Haematol
.
2001
;
112
(
1
):
42
-
47
.
25.
Ribeiro
ML
,
Alloisio
N
,
Almeida
H
, et al
.
Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3
.
Blood
.
2000
;
96
(
4
):
1602
-
1604
.
26.
Kager
L
,
Bruce
LJ
,
Zeitlhofer
P
, et al
.
Band 3 nullVIENNA, a novel homozygous SLC4A1 p.Ser477X variant causing severe hemolytic anemia, dyserythropoiesis and complete distal renal tubular acidosis
.
Pediatr Blood Cancer
.
2017
;
64
(
3
):
e26227
.
27.
Christensen
RD
,
Yaish
HM
,
Gallagher
PG
.
A pediatrician’s practical guide to diagnosing and treating hereditary spherocytosis in neonates
.
Pediatrics
.
2015
;
135
(
6
):
1107
-
1114
.
28.
Delhommeau
F
,
Cynober
T
,
Schischmanoff
PO
, et al
.
Natural history of hereditary spherocytosis during the first year of life
.
Blood
.
2000
;
95
(
2
):
393
-
397
.
29.
Tchernia
G
,
Delhommeau
F
,
Perrotta
S
, et al;
ESPHI working group on hemolytic anemias
.
Recombinant erythropoietin therapy as an alternative to blood transfusions in infants with hereditary spherocytosis
.
Hematol J
.
2000
;
1
(
3
):
146
-
152
.
30.
del Giudice
EM
,
Perrotta
S
,
Nobili
B
,
Specchia
C
,
d’Urzo
G
,
Iolascon
A
.
Coinheritance of Gilbert syndrome increases the risk for developing gallstones in patients with hereditary spherocytosis
.
Blood
.
1999
;
94
(
7
):
2259
-
2262
.
31.
Palek
J
,
Sahr
KE
.
Mutations of the red blood cell membrane proteins: from clinical evaluation to detection of the underlying genetic defect
.
Blood
.
1992
;
80
(
2
):
308
-
330
.
32.
Englum
BR
,
Rothman
J
,
Leonard
S
, et al;
Splenectomy in Congenital Hemolytic Anemia Consortium
.
Hematologic outcomes after total splenectomy and partial splenectomy for congenital hemolytic anemia
.
J Pediatr Surg
.
2016
;
51
(
1
):
122
-
127
.
33.
Rice
HE
,
Englum
BR
,
Rothman
J
, et al;
Splenectomy in Congenital Hemolytic Anemia (SICHA) Consortium
.
Clinical outcomes of splenectomy in children: report of the splenectomy in congenital hemolytic anemia registry
.
Am J Hematol
.
2015
;
90
(
3
):
187
-
192
.
34.
Pincez
T
,
Guitton
C
,
Gauthier
F
, et al
.
Long-term follow-up of subtotal splenectomy for hereditary spherocytosis: a single-center study
.
Blood
.
2016
;
127
(
12
):
1616
-
1618
.
35.
Harper
SL
,
Sriswasdi
S
,
Tang
HY
,
Gaetani
M
,
Gallagher
PG
,
Speicher
DW
.
The common hereditary elliptocytosis-associated α-spectrin L260P mutation perturbs erythrocyte membranes by stabilizing spectrin in the closed dimer conformation
.
Blood
.
2013
;
122
(
17
):
3045
-
3053
.
36.
Gallagher
PG
.
Hereditary elliptocytosis: spectrin and protein 4.1R
.
Semin Hematol
.
2004
;
41
(
2
):
142
-
164
.
37.
Reid
ME
,
Mohandas
N
.
Red blood cell blood group antigens: structure and function
.
Semin Hematol
.
2004
;
41
(
2
):
93
-
117
.
38.
Niss
O
,
Chonat
S
,
Dagaonkar
N
, et al
.
Genotype-phenotype correlations in hereditary elliptocytosis and hereditary pyropoikilocytosis
.
Blood Cells Mol Dis
.
2016
;
61
:
4
-
9
.
39.
Maillet
P
,
Alloisio
N
,
Morlé
L
,
Delaunay
J
.
Spectrin mutations in hereditary elliptocytosis and hereditary spherocytosis
.
Hum Mutat
.
1996
;
8
(
2
):
97
-
107
.
40.
Lacy
JN
,
Ulirsch
JC
,
Grace
RF
, et al
.
Exome sequencing results in successful diagnosis and treatment of a severe congenital anemia
.
Cold Spring Harb Mol Case Stud
.
2016
;
2
(
4
):
a000885
.
41.
Fournier
CM
,
Nicolas
G
,
Gallagher
PG
,
Dhermy
D
,
Grandchamp
B
,
Lecomte
MC
.
Spectrin St Claude, a splicing mutation of the human alpha-spectrin gene associated with severe poikilocytic anemia
.
Blood
.
1997
;
89
(
12
):
4584
-
4590
.
42.
Kuma
H
,
Abe
Y
,
Askin
D
, et al
.
Molecular basis and functional consequences of the dominant effects of the mutant band 3 on the structure of normal band 3 in Southeast Asian ovalocytosis
.
Biochemistry
.
2002
;
41
(
10
):
3311
-
3320
.
43.
Tanner
MJ
,
Bruce
L
,
Martin
PG
,
Rearden
DM
,
Jones
GL
.
Melanesian hereditary ovalocytes have a deletion in red cell band 3
.
Blood
.
1991
;
78
(
10
):
2785
-
2786
.
44.
Genton
B
,
al-Yaman
F
,
Mgone
CS
, et al
.
Ovalocytosis and cerebral malaria
.
Nature
.
1995
;
378
(
6557
):
564
-
565
.
45.
Laosombat
V
,
Viprakasit
V
,
Dissaneevate
S
, et al
.
Natural history of Southeast Asian Ovalocytosis during the first 3 years of life
.
Blood Cells Mol Dis
.
2010
;
45
(
1
):
29
-
32
.
46.
Bruce
LJ
,
Ring
SM
,
Ridgwell
K
, et al
.
South-east Asian ovalocytic (SAO) erythrocytes have a cold sensitive cation leak: implications for in vitro studies on stored SAO red cells
.
Biochim Biophys Acta
.
1999
;
1416
(
1-2
):
258
-
270
.
47.
Picard
V
,
Proust
A
,
Eveillard
M
, et al
.
Homozygous Southeast Asian ovalocytosis is a severe dyserythropoietic anemia associated with distal renal tubular acidosis
.
Blood
.
2014
;
123
(
12
):
1963
-
1965
.
48.
Zarychanski
R
,
Schulz
VP
,
Houston
BL
, et al
.
Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis
.
Blood
.
2012
;
120
(
9
):
1908
-
1915
.
49.
Andolfo
I
,
Alper
SL
,
De Franceschi
L
, et al
.
Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1
.
Blood
.
2013
;
121
(19):
3925
-
3935
.
50.
Albuisson
J
,
Murthy
SE
,
Bandell
M
, et al
.
Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels
.
Nat Commun
.
2013
;
4
(
1
):
1884
.
51.
Glogowska
E
,
Lezon-Geyda
K
,
Maksimova
Y
,
Schulz
VP
,
Gallagher
PG
.
Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis
.
Blood
.
2015
;
126
(
11
):
1281
-
1284
.
52.
Rapetti-Mauss
R
,
Lacoste
C
,
Picard
V
, et al
.
A mutation in the Gardos channel is associated with hereditary xerocytosis
.
Blood
.
2015
;
126
(
11
):
1273
-
1280
.
53.
Andolfo
I
,
Russo
R
,
Manna
F
, et al
.
Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis)
.
Am J Hematol
.
2015
;
90
(
10
):
921
-
926
.
54.
Fermo
E
,
Bogdanova
A
,
Petkova-Kirova
P
, et al
.
“Gardos channelopathy”: a variant of hereditary stomatocytosis with complex molecular regulation
.
Sci Rep
.
2017
;
7
(
1
):
1744
.
55.
Rivera
A
,
Vandorpe
DH
,
Shmukler
BE
, et al
.
Erythrocyte ion content and dehydration modulate maximal Gardos channel activity in KCNN4 V282M/+ hereditary xerocytosis red cells
.
Am J Physiol Cell Physiol
.
2019
;
317
(
2
):
C287
-
C302
.
56.
Picard
V
,
Guitton
C
,
Thuret
I
, et al
.
Clinical and biological features in PIEZO1-hereditary xerocytosis and Gardos channelopathy: a retrospective series of 126 patients
.
Haematologica
.
2019
;
104
(
8
):
1554
-
1564
.
57.
Danielczok
JG
,
Terriac
E
,
Hertz
L
, et al
.
Red blood cell passage of small capillaries is associated with transient Ca2+-mediated adaptations
.
Front Physiol
.
2017
;
8
:
979
.
58.
Dyrda
A
,
Cytlak
U
,
Ciuraszkiewicz
A
, et al
.
Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells
.
PLoS One
.
2010
;
5
(
2
):
e9447
.
59.
Cahalan
SM
,
Lukacs
V
,
Ranade
SS
,
Chien
S
,
Bandell
M
,
Patapoutian
A
.
Piezo1 links mechanical forces to red blood cell volume
.
eLife
.
2015
;
4
:
e07370
.
60.
Bagriantsev
SN
,
Gracheva
EO
,
Gallagher
PG
.
Piezo proteins: regulators of mechanosensation and other cellular processes
.
J Biol Chem
.
2014
;
289
(
46
):
31673
-
31681
.
61.
Bae
C
,
Gnanasambandam
R
,
Nicolai
C
,
Sachs
F
,
Gottlieb
PA
.
Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1
.
Proc Natl Acad Sci USA
.
2013
;
110
(
12
):
E1162
-
E1168
.
62.
Glogowska
E
,
Schneider
ER
,
Maksimova
Y
, et al
.
Novel mechanisms of PIEZO1 dysfunction in hereditary xerocytosis
.
Blood
.
2017
;
130
(
16
):
1845
-
1856
.
63.
Andolfo
I
,
Russo
R
,
Rosato
BE
, et al
.
Genotype-phenotype correlation and risk stratification in a cohort of 123 hereditary stomatocytosis patients
.
Am J Hematol
.
2018
;
93
(
12
):
1509
-
1517
.
64.
Maher
AD
,
Kuchel
PW
.
The Gárdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes
.
Int J Biochem Cell Biol
.
2003
;
35
(
8
):
1182
-
1197
.
65.
Andolfo
I
,
Russo
R
,
Gambale
A
,
Iolascon
A
.
Hereditary stomatocytosis: an underdiagnosed condition
.
Am J Hematol
.
2018
;
93
(
1
):
107
-
121
.
66.
Andolfo
I
,
Russo
R
,
Gambale
A
,
Iolascon
A
.
New insights on hereditary erythrocyte membrane defects
.
Haematologica
.
2016
;
101
(
11
):
1284
-
1294
.
67.
Kaufman
HW
,
Niles
JK
,
Gallagher
DR
, et al
.
Revised prevalence estimate of possible Hereditary Xerocytosis as derived from a large U.S. Laboratory database
.
Am J Hematol
.
2018
;
93
(
1
):
E9
-
E12
.
68.
Ma
S
,
Cahalan
S
,
LaMonte
G
, et al
.
Common PIEZO1 allele in African populations causes RBC dehydration and attenuates plasmodium infection
.
Cell
.
2018
;
173
(
2
):
443
-
455.e12
.
69.
Ilboudo
Y
,
Bartolucci
P
,
Garrett
ME
, et al
.
A common functional PIEZO1 deletion allele associates with red blood cell density in sickle cell disease patients
.
Am J Hematol
.
2018
;
93
(
11
):
E362
-
E365
.
70.
Risinger
M
,
Glogowska
E
,
Chonat
S
, et al
.
Hereditary xerocytosis: diagnostic considerations
.
Am J Hematol
.
2018
;
93
(
3
):
E67
-
E69
.
71.
Risinger
M
,
Black
V
,
Hsieh
L
, et al
.
Evaluation of phenotype-genotype correlation in two common PIEZO1 mutations p.R2456H and p.L2495_E2495dup [abstract]
.
Blood
.
2018
;
132
(
suppl 1
). Abstract
1040
.
72.
Zaninoni
A
,
Fermo
E
,
Vercellati
C
, et al
.
Use of laser assisted optical rotational cell analyzer (LoRRca MaxSis) in the diagnosis of RBC membrane disorders, enzyme defects, and congenital dyserythropoietic anemias: a monocentric study on 202 patients
.
Front Physiol
.
2018
;
9
:
451
.
73.
Caulier
A
,
Jankovsky
N
,
Demont
Y
, et al
.
PIEZO1 activation delays erythroid differentiation of normal and hereditary xerocytosis-derived human progenitors
.
Haematologica
.
2020
;
105
(
3
):
610
-
622
.
74.
Moura
PL
,
Hawley
BR
,
Dobbe
JGG
, et al
.
PIEZO1 gain-of-function mutations delay reticulocyte maturation in hereditary xerocytosis
.
Haematologica
.
2020
;
105
(
3
):
e268
-
e271
.
75.
Archer
NM
,
Shmukler
BE
,
Andolfo
I
, et al
.
Hereditary xerocytosis revisited
.
Am J Hematol
.
2014
;
89
(
12
):
1142
-
1146
.
76.
Kim
A
,
Nemeth
E
.
New insights into iron regulation and erythropoiesis
.
Curr Opin Hematol
.
2015
;
22
(
3
):
199
-
205
.
77.
Stewart
GW
,
Amess
JA
,
Eber
SW
, et al
.
Thrombo-embolic disease after splenectomy for hereditary stomatocytosis
.
Br J Haematol
.
1996
;
93
(
2
):
303
-
310
.
78.
Iolascon
A
,
Andolfo
I
,
Barcellini
W
, et al;
Working Study Group on Red Cells and Iron of the EHA
.
Recommendations regarding splenectomy in hereditary hemolytic anemias
.
Haematologica
.
2017
;
102
(
8
):
1304
-
1313
.
79.
Rapetti-Mauss
R
,
Picard
V
,
Guitton
C
, et al
.
Red blood cell Gardos channel (KCNN4): the essential determinant of erythrocyte dehydration in hereditary xerocytosis
.
Haematologica
.
2017
;
102
(
10
):
e415
-
e418
.
80.
Ataga
KI
,
Reid
M
,
Ballas
SK
, et al;
ICA-17043-10 Study Investigators
.
Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043)
.
Br J Haematol
.
2011
;
153
(
1
):
92
-
104
.
81.
Rapetti-Mauss
R
,
Soriani
O
,
Vinti
H
,
Badens
C
,
Guizouarn
H
.
Senicapoc: a potent candidate for the treatment of a subset of hereditary xerocytosis caused by mutations in the Gardos channel
.
Haematologica
.
2016
;
101
(
11
):
e431
-
e435
.
82.
Xiao
B
.
Levering mechanically activated piezo channels for potential pharmacological intervention
.
Annu Rev Pharmacol Toxicol
.
2020
;
60
:
195
-
218
.
83.
Bruce
LJ
.
Hereditary stomatocytosis and cation-leaky red cells—recent developments
.
Blood Cells Mol Dis
.
2009
;
42
(
3
):
216
-
222
.
84.
Gallagher
PG
.
Disorders of erythrocyte hydration
.
Blood
.
2017
;
130
(
25
):
2699
-
2708
.
85.
Westhoff
CM
,
Ferreri-Jacobia
M
,
Mak
DO
,
Foskett
JK
.
Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter
.
J Biol Chem
.
2002
;
277
(
15
):
12499
-
12502
.
86.
Bruce
LJ
,
Guizouarn
H
,
Burton
NM
, et al
.
The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid substitutions in the Rh-associated glycoprotein
.
Blood
.
2009
;
113
(
6
):
1350
-
1357
.
87.
Barneaud-Rocca
D
,
Borgese
F
,
Guizouarn
H
.
Dual transport properties of anion exchanger 1: the same transmembrane segment is involved in anion exchange and in a cation leak
.
J Biol Chem
.
2011
;
286
(
11
):
8909
-
8916
.
88.
Bruce
LJ
,
Robinson
HC
,
Guizouarn
H
, et al
.
Monovalent cation leaks in human red cells caused by single amino-acid substitutions in the transport domain of the band 3 chloride-bicarbonate exchanger, AE1
.
Nat Genet
.
2005
;
37
(
11
):
1258
-
1263
.
89.
Barneaud-Rocca
D
,
Pellissier
B
,
Borgese
F
,
Guizouarn
H
.
Band 3 missense mutations and stomatocytosis: insight into the molecular mechanism responsible for monovalent cation leak
.
Int J Cell Biol
.
2011
;
2011
:
136802
.
90.
Weber
YG
,
Storch
A
,
Wuttke
TV
, et al
.
GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak
.
J Clin Invest
.
2008
;
118
(
6
):
2157
-
2168
.
91.
Flatt
JF
,
Guizouarn
H
,
Burton
NM
, et al
.
Stomatin-deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome
.
Blood
.
2011
;
118
(
19
):
5267
-
5277
.
92.
Bawazir
WM
,
Gevers
EF
,
Flatt
JF
, et al
.
An infant with pseudohyperkalemia, hemolysis, and seizures: cation-leaky GLUT1-deficiency syndrome due to a SLC2A1 mutation
.
J Clin Endocrinol Metab
.
2012
;
97
(
6
):
E987
-
E993
.
93.
Iolascon
A
,
De Falco
L
,
Borgese
F
, et al
.
A novel erythroid anion exchange variant (Gly796Arg) of hereditary stomatocytosis associated with dyserythropoiesis
.
Haematologica
.
2009
;
94
(
8
):
1049
-
1059
.
94.
Rivera
A
,
Vandorpe
DH
,
Shmukler
BE
, et al
.
Erythrocytes from hereditary xerocytosis patients heterozygous for KCNN4 V282M exhibit increased spontaneous Gardos channel-like activity inhibited by senicapoc
.
Am J Hematol
.
2017
;
92
(
6
):
E108
-
E110
.
95.
Kesely
KR
,
Pantaleo
A
,
Turrini
FM
,
Olupot-Olupot
P
,
Low
PS
.
Inhibition of an erythrocyte tyrosine kinase with imatinib prevents plasmodium falciparum egress and terminates parasitemia
.
PLoS One
.
2016
;
11
(
10
):
e0164895
.
96.
King
MJ
,
Smythe
JS
,
Mushens
R
.
Eosin-5-maleimide binding to band 3 and Rh-related proteins forms the basis of a screening test for hereditary spherocytosis
.
Br J Haematol
.
2004
;
124
(
1
):
106
-
113
.
97.
King
MJ
,
Jepson
MA
,
Guest
A
,
Mushens
R
.
Detection of hereditary pyropoikilocytosis by the eosin-5-maleimide (EMA)-binding test is attributable to a marked reduction in EMA-reactive transmembrane proteins
.
Int J Lab Hematol
.
2011
;
33
(
2
):
205
-
211
.
98.
Bessis
M
,
Mohandas
N
,
Feo
C
.
Automated ektacytometry: a new method of measuring red cell deformability and red cell indices
.
Blood Cells
.
1980
;
6
(
3
):
315
-
327
.
99.
Mohandas
N
,
Clark
MR
,
Jacobs
MS
,
Shohet
SB
.
Analysis of factors regulating erythrocyte deformability
.
J Clin Invest
.
1980
;
66
(
3
):
563
-
573
.
100.
Da Costa
L
,
Suner
L
,
Galimand
J
, et al;
French Society of Hematology (SFH)
.
Diagnostic tool for red blood cell membrane disorders: assessment of a new generation ektacytometer
.
Blood Cells Mol Dis
.
2016
;
56
(
1
):
9
-
22
.
101.
Rets
A
,
Clayton
AL
,
Christensen
RD
,
Agarwal
AM
.
Molecular diagnostic update in hereditary hemolytic anemia and neonatal hyperbilirubinemia
.
Int J Lab Hematol
.
2019
;
41
(
S1 Suppl 1
):
95
-
101
.
102.
King
MJ
,
Garçon
L
,
Hoyer
JD
, et al;
International Council for Standardization in Haematology
.
ICSH guidelines for the laboratory diagnosis of nonimmune hereditary red cell membrane disorders
.
Int J Lab Hematol
.
2015
;
37
(
3
):
304
-
325
.
103.
Saotome
K
,
Murthy
SE
,
Kefauver
JM
,
Whitwam
T
,
Patapoutian
A
,
Ward
AB
.
Structure of the mechanically activated ion channel Piezo1
.
Nature
.
2018
;
554
(
7693
):
481
-
486
.
104.
Zhao
Q
,
Zhou
H
,
Li
X
,
Xiao
B
.
The mechanosensitive Piezo1 channel: a three-bladed propeller-like structure and a lever-like mechanogating mechanism
.
FEBS J
.
2019
;
286
(
13
):
2461
-
2470
.
105.
Zhao
Q
,
Zhou
H
,
Chi
S
, et al
.
Structure and mechanogating mechanism of the Piezo1 channel
.
Nature
.
2018
;
554
(
7693
):
487
-
492
.
106.
Guo
YR
,
MacKinnon
R
.
Structure-based membrane dome mechanism for Piezo mechanosensitivity
.
eLife
.
2017
;
6
:
e33660
.
107.
Haselwandter
CA
,
MacKinnon
R
.
Piezo’s membrane footprint and its contribution to mechanosensitivity
.
eLife
.
2018
;
7
:
e41968
.
108.
Pettersen
EF
,
Goddard
TD
,
Huang
CC
, et al
.
UCSF Chimera–a visualization system for exploratory research and analysis
.
J Comput Chem
.
2004
;
25
(
13
):
1605
-
1612
.
109.
Fanger
CM
,
Ghanshani
S
,
Logsdon
NJ
, et al
.
Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1
.
J Biol Chem
.
1999
;
274
(
9
):
5746
-
5754
.
You do not currently have access to this content.