Key Points

  • SCD subjects show stronger and faster vasoconstriction to thermal stimuli, indicating autonomic hypersensitivity of their microvasculature.

  • Cumulative vasoconstriction with repeated thermal stimuli progressively decreases perfusion and delays microvascular red cell transit.

Abstract

Persons with sickle cell disease (SCD) exhibit subjective hypersensitivity to cold and heat perception in experimental settings, and triggers such as cold exposure are known to precipitate vaso-occlusive crises by still unclear mechanisms. Decreased microvascular blood flow (MBF) increases the likelihood of vaso-occlusion by increasing entrapment of sickled red blood cells in the microvasculature. Because those with SCD have dysautonomia, we anticipated that thermal exposure would induce autonomic hypersensitivity of their microvasculature with an increased propensity toward vasoconstriction. We exposed 17 patients with SCD and 16 control participants to a sequence of predetermined threshold temperatures for cold and heat detection and cold and heat pain via a thermode placed on the right hand. MBF was measured on the contralateral hand by photoplethysmography, and cardiac autonomic balance was assessed by determining heart rate variability. Thermal stimuli at both detection and pain thresholds caused a significant decrease in MBF in the contralateral hand within seconds of stimulus application, with patients with SCD showing significantly stronger vasoconstriction (P = .019). Furthermore, patients with SCD showed a greater progressive decrease in blood flow than did the controls, with poor recovery between episodes of thermal stimulation (P = .042). They had faster vasoconstriction than the controls (P = .033), especially with cold detection stimulus. Individuals with higher anxiety also experienced more rapid vasoconstriction (P = .007). Augmented vasoconstriction responses and progressive decreases in perfusion with repeated thermal stimulation in SCD are indicative of autonomic hypersensitivity in the microvasculature. These effects are likely to increase red cell entrapment in response to clinical triggers such as cold or stress, which have been associated with vaso-occlusive crises in SCD.

REFERENCES

1.
Rees
DC
,
Williams
TN
,
Gladwin
MT
.
Sickle-cell disease
.
Lancet
.
2010
;
376
(
9757
):
2018
-
2031
.
2.
Kassim
AA
,
DeBaun
MR
.
Sickle cell disease, vasculopathy, and therapeutics
.
Annu Rev Med
.
2013
;
64
(
1
):
451
-
466
.
3.
Platt
OS
,
Thorington
BD
,
Brambilla
DJ
, et al
.
Pain in sickle cell disease. Rates and risk factors
.
N Engl J Med
.
1991
;
325
(
1
):
11
-
16
.
4.
Serjeant
GR
.
Natural history and determinants of clinical severity of sickle cell disease
.
Curr Opin Hematol
.
1995
;
2
(
2
):
103
-
108
.
5.
Steinberg
MH
,
H
SM
.
Predicting clinical severity in sickle cell anaemia
.
Br J Haematol
.
2005
;
129
(
4
):
465
-
481
.
6.
Quinn
CT
.
Minireview: Clinical severity in sickle cell disease: the challenges of definition and prognostication
.
Exp Biol Med (Maywood)
.
2016
;
241
(
7
):
679
-
688
.
7.
Eaton
WA
,
Hofrichter
J
,
Ross
PD
.
Editorial: Delay time of gelation: a possible determinant of clinical severity in sickle cell disease
.
Blood
.
1976
;
47
(
4
):
621
-
627
.
8.
Hofrichter
J
,
Ross
PD
,
Eaton
WA
.
Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease
.
Proc Natl Acad Sci USA
.
1974
;
71
(
12
):
4864
-
4868
.
9.
Kato
GJ
,
Piel
FB
,
Reid
CD
, et al
.
Sickle cell disease
.
Nat Rev Dis Primers
.
2018
;
4
(
1
):
18010
.
10.
Zhang
D
,
Xu
C
,
Manwani
D
,
Frenette
PS
.
Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology
.
Blood
.
2016
;
127
(
7
):
801
-
809
.
11.
Shah
P
,
Khaleel
M
,
Thuptimdang
W
, et al
.
Mental stress causes vasoconstriction in subjects with sickle cell disease and normal controls
.
Haematologica
.
2020
;
105
(
1
):
83
-
90
.
12.
Khaleel
M
,
Puliyel
M
,
Shah
P
, et al
.
Individuals with sickle cell disease have a significantly greater vasoconstriction response to thermal pain than controls and have significant vasoconstriction in response to anticipation of pain
.
Am J Hematol
.
2017
;
92
(
11
):
1137
-
1145
.
13.
Sangkatumvong
S
,
Khoo
MCK
,
Kato
R
, et al
.
Peripheral vasoconstriction and abnormal parasympathetic response to sighs and transient hypoxia in sickle cell disease
.
Am J Respir Crit Care Med
.
2011
;
184
(
4
):
474
-
481
.
14.
Brandow
AM
,
Stucky
CL
,
Hillery
CA
,
Hoffmann
RG
,
Panepinto
JA
.
Patients with sickle cell disease have increased sensitivity to cold and heat
.
Am J Hematol
.
2013
;
88
(
1
):
37
-
43
.
15.
O’Leary
JD
,
Crawford
MW
,
Odame
I
,
Shorten
GD
,
McGrath
PA
.
Thermal pain and sensory processing in children with sickle cell disease
.
Clin J Pain
.
2014
;
30
(
3
):
244
-
250
.
16.
Graham
GS
.
A Case of Sickle Cell Anemia With Necropsy
.
Arch Intern Med (Chic)
.
1924
;
34
(
6
):
778
-
800
.
17.
Ibrahim
AS
.
Relationship between meteorological changes and occurrence of painful sickle cell crises in Kuwait
.
Trans R Soc Trop Med Hyg
.
1980
;
74
(
2
):
159
-
161
.
18.
Resar
LMS
,
Oski
FA
.
Cold water exposure and vaso-occlusive crises in sickle cell anemia
.
J Pediatr
.
1991
;
118
(
3
):
407
-
409
.
19.
Nolan
VG
,
Zhang
Y
,
Lash
T
,
Sebastiani
P
,
Steinberg
MH
.
Association between wind speed and the occurrence of sickle cell acute painful episodes: results of a case-crossover study
.
Br J Haematol
.
2008
;
143
(
3
):
433
-
438
.
20.
Rogovik
AL
,
Persaud
J
,
Friedman
JN
,
Kirby
MA
,
Goldman
RD
.
Pediatric vasoocclusive crisis and weather conditions
.
J Emerg Med
.
2011
;
41
(
5
):
559
-
565
.
21.
Tewari
S
,
Brousse
V
,
Piel
FB
,
Menzel
S
,
Rees
DC
.
Environmental determinants of severity in sickle cell disease
.
Haematologica
.
2015
;
100
(
9
):
1108
-
1116
.
22.
Redwood
AM
,
Williams
EM
,
Desal
P
,
Serjeant
GR
.
Climate and painful crisis of sickle-cell disease in Jamaica
.
BMJ
.
1976
;
1
(
6001
):
66
-
68
.
23.
Smith
WR
,
Bauserman
RL
,
Ballas
SK
, et al;
Multicenter Study of Hydroxyurea in Sickle Cell Anemia
.
Climatic and geographic temporal patterns of pain in the Multicenter Study of Hydroxyurea
.
Pain
.
2009
;
146
(
1-2
):
91
-
98
.
24.
Chalacheva
P
,
Khaleel
M
,
Sunwoo
J
, et al
.
Biophysical markers of the peripheral vasoconstriction response to pain in sickle cell disease
.
PLoS One
.
2017
;
12
(
5
):
e0178353
.
25.
Spielberger
CD
,
Gorsuch
R
,
Lushene
RE
,
Vagg
PR
,
Jacobs
GA
.
Manual for the State-Trait Anxiety Inventory (Form Y1–Y2). Vol. 4
.
White Lake, MN
:
Consulting Psychologists Press
;
1983
.
26.
Grös
DF
,
Antony
MM
,
Simms
LJ
,
McCabe
RE
.
Psychometric properties of the State-Trait Inventory for Cognitive and Somatic Anxiety (STICSA): Comparison to the State-Trait Anxiety Inventory (STAI)
.
Phychol Assess
.
2007
;
19
(
4
):
369
-
381
.
27.
McCracken
LM
,
Dhingra
L
.
A short version of the Pain Anxiety Symptoms Scale (PASS-20): preliminary development and validity
.
Pain Res Manag
.
2002
;
7
(
1
):
45
-
50
.
28.
Roelofs
J
,
McCracken
L
,
Peters
ML
,
Crombez
G
,
van Breukelen
G
,
Vlaeyen
JWS
.
Psychometric evaluation of the Pain Anxiety Symptoms Scale (PASS) in chronic pain patients
.
J Behav Med
.
2004
;
27
(
2
):
167
-
183
.
29.
Rolke
R
,
Baron
R
,
Maier
C
, et al
.
Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values [published correction in Pain. 2006;125(1-2):197]
.
Pain
.
2006
;
123
(
3
):
231
-
243
.
30.
Backonja
M-M
,
Walk
D
,
Edwards
RR
, et al
.
Quantitative sensory testing in measurement of neuropathic pain phenomena and other sensory abnormalities
.
Clin J Pain
.
2009
;
25
(
7
):
641
-
647
.
31.
Brandow
AM
,
Panepinto
JA
.
Clinical Interpretation of Quantitative Sensory Testing as a Measure of Pain Sensitivity in Patients With Sickle Cell Disease
.
J Pediatr Hematol Oncol
.
2016
;
38
(
4
):
288
-
293
.
32.
Nahman-Averbuch
H
,
Shefi
T
,
Schneider
VJI
II
, et al
.
Quantitative sensory testing in patients with migraine: a systematic review and meta-analysis
.
Pain
.
2018
;
159
(
7
):
1202
-
1223
.
33.
Heldestad
V
,
Linder
J
,
Sellersjö
L
,
Nordh
E
.
Reproducibility and influence of test modality order on thermal perception and thermal pain thresholds in quantitative sensory testing
.
Clin Neurophysiol
.
2010
;
121
(
11
):
1878
-
1885
.
34.
Sunwoo
J
,
Chalacheva
P
,
Khaleel
M
, et al
.
A novel cross-correlation methodology for assessing biophysical responses associated with pain
.
J Pain Res
.
2018
;
11
:
2207
-
2219
.
35.
Elgendi
M
.
On the analysis of fingertip photoplethysmogram signals
.
Curr Cardiol Rev
.
2012
;
8
(
1
):
14
-
25
.
36.
Korhonen
I
,
Yli-Hankala
A
.
Photoplethysmography and nociception
.
Acta Anaesthesiol Scand
.
2009
;
53
(
8
):
975
-
985
.
37.
Fuster
V
,
Ryden
LE
,
Asinger
RW
;
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology
.
Heart rate variability. Standards of measurement, physiological interpretation, and clinical use
.
Eur Heart J
.
1996
;
17
(
3
):
354
-
381
.
38.
Kleiger
RE
,
Stein
PK
,
Bigger
JT
Jr.
Heart rate variability: measurement and clinical utility
.
Ann Noninvasive Electrocardiol
.
2005
;
10
(
1
):
88
-
101
.
39.
Romero Mestre
JC
,
Hernández
A
,
Agramonte
O
,
Hernández
P
.
Cardiovascular autonomic dysfunction in sickle cell anemia: a possible risk factor for sudden death?
Clin Auton Res
.
1997
;
7
(
3
):
121
-
125
.
40.
Sanya
EO
,
Soladoye
A
,
Olanrewaju
TO
,
Kolo
PM
,
Durotoye
I
.
Cardiovascular autonomic reflex function in sickle cell anaemia patients
.
Niger Postgrad Med J
.
2010
;
17
(
4
):
266
-
269
.
41.
Nebor
D
,
Bowers
A
,
Hardy-Dessources
MD
, et al;
CAREST Study Group
.
Frequency of pain crises in sickle cell anemia and its relationship with the sympatho-vagal balance, blood viscosity and inflammation
.
Haematologica
.
2011
;
96
(
11
):
1589
-
1594
.
42.
Oguanobi
NI
,
Onwubere
BJ
,
Anisiuba
BC
,
Ike
SO
,
Ejim
EC
,
Ibegbulam
OG
.
Clinical findings associated with cardiovascular autonomic dysfunction in adult sickle cell anaemia patients
.
Acta Cardiol
.
2012
;
67
(
2
):
169
-
175
.
43.
Pearson
SR
,
Alkon
A
,
Treadwell
M
,
Wolff
B
,
Quirolo
K
,
Boyce
WT
.
Autonomic reactivity and clinical severity in children with sickle cell disease
.
Clin Auton Res
.
2005
;
15
(
6
):
400
-
407
.
44.
Cataldo
G
,
Rajput
S
,
Gupta
K
,
Simone
DA
.
Sensitization of nociceptive spinal neurons contributes to pain in a transgenic model of sickle cell disease
.
Pain
.
2015
;
156
(
4
):
722
-
730
.
45.
Veluswamy
S
,
Shah
P
,
Denton
CC
,
Chalacheva
P
,
Khoo
MCK
,
Coates
TD
.
Vaso-Occlusion in Sickle Cell Disease: Is Autonomic Dysregulation of the Microvasculature the Trigger?
J Clin Med
.
2019
;
8
(
10
):
1690
.
46.
Coates
TD
.
You don’t always get what you want: Does hypoxia cause sickle cell crisis?
Am J Hematol
.
2018
;
93
(
4
):
475
-
477
.
47.
Connes
P
,
Coates
TD
.
Autonomic nervous system dysfunction: implication in sickle cell disease
.
C R Biol
.
2013
;
336
(
3
):
142
-
147
.
You do not currently have access to this content.

Sign in via your Institution

Sign In