Key Points

  • Insertion of ASS or OTC enzymes enhances CAR-T cell proliferation and activity in the low arginine microenvironment.

Abstract

Hematological and solid cancers catabolize the semiessential amino acid arginine to drive cell proliferation. However, the resulting low arginine microenvironment also impairs chimeric antigen receptor T cells (CAR-T) cell proliferation, limiting their efficacy in clinical trials against hematological and solid malignancies. T cells are susceptible to the low arginine microenvironment because of the low expression of the arginine resynthesis enzymes argininosuccinate synthase (ASS) and ornithine transcarbamylase (OTC). We demonstrate that T cells can be reengineered to express functional ASS or OTC enzymes, in concert with different chimeric antigen receptors. Enzyme modifications increase CAR-T cell proliferation, with no loss of CAR cytotoxicity or increased exhaustion. In vivo, enzyme-modified CAR-T cells lead to enhanced clearance of leukemia or solid tumor burden, providing the first metabolic modification to enhance CAR-T cell therapies.

REFERENCES

1.
Park
JH
,
Rivière
I
,
Gonen
M
, et al
.
Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
449
-
459
.
2.
Louis
CU
,
Savoldo
B
,
Dotti
G
, et al
.
Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma
.
Blood
.
2011
;
118
(
23
):
6050
-
6056
.
3.
Beatty
GL
,
Haas
AR
,
Maus
MV
, et al
.
Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies
.
Cancer Immunol Res
.
2014
;
2
(
2
):
112
-
120
.
4.
Fultang
L
,
Panetti
S
,
Ng
M
, et al
.
MDSC targeting with Gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers
.
EBioMedicine
.
2019
;
47
:
235
-
246
.
5.
Mussai
F
,
De Santo
C
,
Abu-Dayyeh
I
, et al
.
Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment
.
Blood
.
2013
;
122
(
5
):
749
-
758
.
6.
Mussai
F
,
Wheat
R
,
Sarrou
E
, et al
.
Targeting the arginine metabolic brake enhances immunotherapy for leukaemia
.
Int J Cancer
.
2019
;
145
(
8
):
2201
-
2208
.
7.
Mussai
F
,
Egan
S
,
Hunter
S
, et al
.
Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity
.
Cancer Res
.
2015
;
75
(
15
):
3043
-
3053
.
8.
Vardon
A
,
Dandapani
M
,
Cheng
D
,
Cheng
P
,
De Santo
C
,
Mussai
F
.
Arginine auxotrophic gene signature in paediatric sarcomas and brain tumours provides a viable target for arginine depletion therapies
.
Oncotarget
.
2017
;
8
(
38
):
63506
-
63517
.
9.
De Santo
C
,
Booth
S
,
Vardon
A
, et al
.
The arginine metabolome in acute lymphoblastic leukemia can be targeted by the pegylated-recombinant arginase I BCT-100
.
Int J Cancer
.
2018
;
142
(
7
):
1490
-
1502
.
10.
Sugimura
K
,
Kimura
T
,
Arakawa
H
, et al
.
Elevated argininosuccinate synthetase activity in adult T leukemia cell lines
.
Leuk Res
.
1990
;
14
(
10
):
931
-
934
.
11.
Werner
A
,
Koschke
M
,
Leuchtner
N
, et al
.
Reconstitution of T cell proliferation under arginine limitation: activated human T cells take up citrulline via L-type amino acid transporter 1 and use it to regenerate arginine after induction of argininosuccinate synthase expression
.
Front Immunol
.
2017
;
8
:
864
.
12.
Tarasenko
TN
,
Gomez-Rodriguez
J
,
McGuire
PJ
.
Impaired T cell function in argininosuccinate synthetase deficiency
.
J Leukoc Biol
.
2015
;
97
(
2
):
273
-
278
.
13.
Chandler
RJ
,
Tarasenko
TN
,
Cusmano-Ozog
K
, et al
.
Liver-directed adeno-associated virus serotype 8 gene transfer rescues a lethal murine model of citrullinemia type 1
.
Gene Ther
.
2013
;
20
(
12
):
1188
-
1191
.
14.
Broadhurst
D
,
Goodacre
R
,
Reinke
SN
, et al
.
Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies
.
Metabolomics
.
2018
;
14
(
6
):
72
.
15.
Di Guida
R
,
Engel
J
,
Allwood
JW
, et al
.
Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling
.
Metabolomics
.
2016
;
12
(
5
):
93
.
16.
Künkele
A
,
Taraseviciute
A
,
Finn
LS
, et al
.
Preclinical assessment of CD171-directed CAR T-cell adoptive therapy for childhood neuroblastoma: CE7 epitope target safety and product manufacturing feasibility
.
Clin Cancer Res
.
2017
;
23
(
2
):
466
-
477
.
17.
Kubo
Y
,
Obata
A
,
Akanuma
S
,
Hosoya
K
.
Impact of cationic amino acid transporter 1 on blood-retinal barrier transport of L-ornithine
.
Invest Ophthalmol Vis Sci
.
2015
;
56
(
10
):
5925
-
5932
.
18.
Yue
M
,
Jiang
J
,
Gao
P
,
Liu
H
,
Qing
G
.
Oncogenic MYC activates a feedforward regulatory loop promoting essential amino acid metabolism and tumorigenesis
.
Cell Rep
.
2017
;
21
(
13
):
3819
-
3832
.
19.
Mussai
F
,
Egan
S
,
Higginbotham-Jones
J
, et al
.
Arginine dependence of acute myeloid leukemia blast proliferation: a novel therapeutic target
.
Blood
.
2015
;
125
(
15
):
2386
-
2396
.
20.
Kenderian
SS
,
Ruella
M
,
Shestova
O
, et al
.
CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia
.
Leukemia
.
2015
;
29
(
8
):
1637
-
1647
.
21.
Xu
X
,
Huang
W
,
Heczey
A
, et al
.
NKT cells co-expressing a GD2-specific chimeric antigen receptor and IL-15 show enhanced in vivo persistence and antitumor activity against neuroblastoma
.
Clin Cancer Res
.
2019
;
25
(
23
):
7126
-
7138
.
22.
Long
AH
,
Haso
WM
,
Shern
JF
, et al
.
4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors
.
Nat Med
.
2015
;
21
(
6
):
581
-
590
.
23.
Thistlethwaite
FC
,
Gilham
DE
,
Guest
RD
, et al
.
The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity
.
Cancer Immunol Immunother
.
2017
;
66
(
11
):
1425
-
1436
.
24.
Steggerda
SM
,
Bennett
MK
,
Chen
J
, et al
.
Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment
.
J Immunother Cancer
.
2017
;
5
(
1
):
101
.
25.
Muller
AJ
,
Manfredi
MG
,
Zakharia
Y
,
Prendergast
GC
.
Inhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyond
.
Semin Immunopathol
.
2019
;
41
(
1
):
41
-
48
.
You do not currently have access to this content.

Sign in via your Institution

Sign In