Key Points

  • Acalabrutinib is clinically effective in relapsed/refractory and high-risk treatment naïve chronic lymphocytic leukemia.

  • BID dosing maintains near complete occupancy of BTK in blood and tissues and more profoundly inhibits oncogenic signaling than QD dosing.

Abstract

Inhibition of the B-cell receptor pathway, and specifically of Bruton tyrosine kinase (BTK), is a leading therapeutic strategy in B-cell malignancies, including chronic lymphocytic leukemia (CLL). Target occupancy is a measure of covalent binding to BTK and has been applied as a pharmacodynamic parameter in clinical studies of BTK inhibitors. However, the kinetics of de novo BTK synthesis, which determines occupancy, and the relationship between occupancy, pathway inhibition and clinical outcomes remain undefined. This randomized phase 2 study investigated the safety, efficacy, and pharmacodynamics of a selective BTK inhibitor acalabrutinib at 100 mg twice daily (BID) or 200 mg once daily (QD) in 48 patients with relapsed/refractory or high-risk treatment-naïve CLL. Acalabrutinib was well tolerated and yielded an overall response rate (ORR) of partial response or better of 95.8% (95% confidence interval [CI], 78.9-99.9) and an estimated progression-free survival (PFS) rate at 24 months of 91.5% (95% CI, 70.0-97.8) with BID dosing and an ORR of 79.2% (95% CI, 57.9-92.9) and an estimated PFS rate at 24 months of 87.2% (95% CI, 57.2-96.7) with QD dosing. BTK resynthesis was faster in patients with CLL than in healthy volunteers. BID dosing maintained higher BTK occupancy and achieved more potent pathway inhibition compared with QD dosing. Small increments in occupancy attained by BID dosing relative to QD dosing compounded over time to augment downstream biological effects. The impact of BTK occupancy on long-term clinical outcomes remains to be determined. This trial was registered at www.clinicaltrials.gov as #NCT02337829.

REFERENCES

REFERENCES
1.
Byrd
JC
,
Harrington
B
,
O’Brien
S
, et al
.
Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia
.
N Engl J Med
.
2016
;
374
(
4
):
323
-
332
.
2.
Herman
SEM
,
Montraveta
A
,
Niemann
CU
, et al
.
The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia
.
Clin Cancer Res
.
2017
;
23
(
11
):
2831
-
2841
.
3.
Brown
JR
.
How I treat CLL patients with ibrutinib
.
Blood
.
2018
;
131
(
4
):
379
-
386
.
4.
Lipsky
AH
,
Farooqui
MZ
,
Tian
X
, et al
.
Incidence and risk factors of bleeding-related adverse events in patients with chronic lymphocytic leukemia treated with ibrutinib
.
Haematologica
.
2015
;
100
(
12
):
1571
-
1578
.
5.
Wang
A
,
Yan
XE
,
Wu
H
, et al
.
Ibrutinib targets mutant-EGFR kinase with a distinct binding conformation
.
Oncotarget
.
2016
;
7
(
43
):
69760
-
69769
.
6.
Mato
AR
,
Nabhan
C
,
Thompson
MC
, et al
.
Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: a real-world analysis
.
Haematologica
.
2018
;
103
(
5
):
874
-
879
.
7.
Awan
FT
,
Schuh
A
,
Brown
JR
, et al
.
Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib
.
Blood Adv
.
2019
;
3
(
9
):
1553
-
1562
.
8.
Barf
T
,
Covey
T
,
Izumi
R
, et al
.
Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile
.
J Pharmacol Exp Ther
.
2017
;
363
(
2
):
240
-
252
.
9.
Herishanu
Y
,
Pérez-Galán
P
,
Liu
D
, et al
.
The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia
.
Blood
.
2011
;
117
(
2
):
563
-
574
.
10.
Yeomans
A
,
Thirdborough
SM
,
Valle-Argos
B
, et al
.
Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYC-specific mRNA translation
.
Blood
.
2016
;
127
(
4
):
449
-
457
.
11.
Tam
CS
,
Trotman
J
,
Opat
S
, et al
.
Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL
.
Blood
.
2019
;
134
(
11
):
851
-
859
.
12.
CALQUENCE
.
(acalabrutinib) [package insert]
.
Wilmington, DE: AstraZeneca
:
2019
.
13.
Hallek
M
,
Cheson
BD
,
Catovsky
D
, et al;
International Workshop on Chronic Lymphocytic Leukemia
.
Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines
.
Blood
.
2008
;
111
(
12
):
5446
-
5456
.
14.
Cheson
BD
,
Byrd
JC
,
Rai
KR
, et al
.
Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia
.
J Clin Oncol
.
2012
;
30
(
23
):
2820
-
2822
.
15.
Rawstron
AC
,
Böttcher
S
,
Letestu
R
, et al;
European Research Initiative in CLL
.
Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL
.
Leukemia
.
2013
;
27
(
1
):
142
-
149
.
16.
Albitar
A
,
Ma
W
,
DeDios
I
, et al
.
Using high-sensitivity sequencing for the detection of mutations in BTK and PLCγ2 genes in cellular and cell-free DNA and correlation with progression in patients treated with BTK inhibitors
.
Oncotarget
.
2017
;
8
(
11
):
17936
-
17944
.
17.
Ritchie
ME
,
Phipson
B
,
Wu
D
, et al
.
limma powers differential expression analyses for RNA-sequencing and microarray studies
.
Nucleic Acids Res
.
2015
;
43
(
7
):
e47
.
18.
Law
CW
,
Chen
Y
,
Shi
W
,
Smyth
GK
.
voom: precision weights unlock linear model analysis tools for RNA-seq read counts
.
Genome Biol
.
2014
;
15
(
2
):
R29
.
19.
Robinson
MD
,
Oshlack
A
.
A scaling normalization method for differential expression analysis of RNA-seq data
.
Genome Biol
.
2010
;
11
(
3
):
R25
.
20.
Sergushichev
AA
.
An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation
.
bioRxiv
. .
21.
Landau
DA
,
Sun
C
,
Rosebrock
D
, et al
.
The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy
.
Nat Commun
.
2017
;
8
(
1
):
2185
.
22.
Taneja
A
,
Jones
J
,
Pittaluga
S
, et al
.
Richter transformation to Hodgkin lymphoma on Bruton’s tyrosine kinase inhibitor therapy
.
Leuk Lymphoma
.
2018
;
60
(
2
):
1
-
4
.
23.
Mustafa
R
,
Herman
SEM
,
Jones
J
,
Gyamfi
J
,
Farooqui
M
,
Wiestner
A
.
Ibrutinib inhibits B-cell adhesion and causes an efflux of chronic lymphocytic leukemia cells from the tissue microenvironment into the blood leading to a transient treatment-induced lymphocytosis
.
Blood
.
2013
;
122
(
21
):
674
.
24.
Herman
SE
,
Gordon
AL
,
Hertlein
E
, et al
.
Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765
.
Blood
.
2011
;
117
(
23
):
6287
-
6296
.
25.
Herman
SE
,
Wiestner
A
.
Preclinical modeling of novel therapeutics in chronic lymphocytic leukemia: the tools of the trade
.
Semin Oncol
.
2016
;
43
(
2
):
222
-
232
.
26.
Woyach
JA
,
Furman
RR
,
Liu
TM
, et al
.
Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib
.
N Engl J Med
.
2014
;
370
(
24
):
2286
-
2294
.
27.
Liu
TM
,
Woyach
JA
,
Zhong
Y
, et al
.
Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation
.
Blood
.
2015
;
126
(
1
):
61
-
68
.
28.
Brown
JR
,
Moslehi
J
,
O’Brien
S
, et al
.
Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials
.
Haematologica
.
2017
;
102
(
10
):
1796
-
1805
.
You do not currently have access to this content.