Abstract

Secondary acute myeloid leukemias (AMLs) evolving from an antecedent myeloproliferative neoplasm (MPN) are characterized by a unique set of cytogenetic and molecular features distinct from de novo AML. Given the high frequency of poor-risk cytogenetic and molecular features, malignant clones are frequently insensitive to traditional AML chemotherapeutic agents. Allogeneic stem cell transplant, the only treatment modality shown to have any beneficial long-term outcome, is often not possible given the advanced age of patients at time of diagnosis and frequent presence of competing comorbidities. Even in this setting, relapse rates remain high. As a result, outcomes are generally poor and there remains a significant unmet need for novel therapeutic strategies. Although advances in cancer genomics have dramatically enhanced our understanding of the molecular events governing clonal evolution in MPNs, the cell-intrinsic and -extrinsic mechanisms driving leukemic transformation at this level remain poorly understood. Here, we review known risk factors for the development of leukemic transformation in MPNs, recent progress made in our understanding of the molecular features associated with leukemic transformation, current treatment strategies, and emerging therapeutic options for this high-risk myeloid malignancy.

REFERENCES

REFERENCES
1.
Tefferi
A
,
Pardanani
A
.
Myeloproliferative neoplasms: a contemporary review
.
JAMA Oncol
.
2015
;
1
(
1
):
97
-
105
.
2.
Greenfield
G
,
McPherson
S
,
Mills
K
,
McMullin
MF
.
The ruxolitinib effect: understanding how molecular pathogenesis and epigenetic dysregulation impact therapeutic efficacy in myeloproliferative neoplasms
.
J Transl Med
.
2018
;
16
(
1
):
360
.
3.
Mesa
R
,
Verstovsek
S
,
Cervantes
F
, et al
.
Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (post-PV MF), post essential thrombocythemia myelofibrosis (post-ET MF), blast phase PMF (PMF-BP): consensus on terminology by the international working group for myelofibrosis research and treatment (IWG-MRT)
.
Leuk Res
.
2007
;
31
(
6
):
737
-
740
.
4.
Tefferi
A
,
Guglielmelli
P
,
Larson
DR
, et al
.
Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis
.
Blood
.
2014
;
124
(
16
):
2507
-
2513
.
5.
Barbui
T
,
Thiele
J
,
Passamonti
F
, et al
.
Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study
.
J Clin Oncol
.
2011
;
29
(
23
):
3179
-
3184
.
6.
Cervantes
F
,
Tassies
D
,
Salgado
C
,
Rovira
M
,
Pereira
A
,
Rozman
C
.
Acute transformation in nonleukemic chronic myeloproliferative disorders: actuarial probability and main characteristics in a series of 218 patients
.
Acta Haematol
.
1991
;
85
(
3
):
124
-
127
.
7.
Tefferi
A
,
Rumi
E
,
Finazzi
G
, et al
.
Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study
.
Leukemia
.
2013
;
27
(
9
):
1874
-
1881
.
8.
Tam
CS
,
Nussenzveig
RM
,
Popat
U
, et al
.
The natural history and treatment outcome of blast phase BCR-ABL- myeloproliferative neoplasms
.
Blood
.
2008
;
112
(
5
):
1628
-
1637
.
9.
Chim
CS
,
Kwong
YL
,
Lie
AK
, et al
.
Long-term outcome of 231 patients with essential thrombocythemia: prognostic factors for thrombosis, bleeding, myelofibrosis, and leukemia
.
Arch Intern Med
.
2005
;
165
(
22
):
2651
-
2658
.
10.
Alhuraiji
A
,
Naqvi
K
,
Huh
YO
,
Ho
C
,
Verstovsek
S
,
Bose
P
.
Acute lymphoblastic leukemia secondary to myeloproliferative neoplasms or after lenalidomide exposure
.
Clin Case Rep
.
2017
;
6
(
1
):
155
-
161
.
11.
Kaur
M
,
Singh Rana
AP
,
Kapoor
S
,
Puri
A
.
Diagnostic value of bone marrow aspiration and biopsy in routine hematology practice
.
J Clin Diagn Res
.
2014
;
8
(
8
):
FC13
-
FC16
.
12.
Abdulkarim
K
,
Girodon
F
,
Johansson
P
, et al
.
AML transformation in 56 patients with Ph- MPD in two well defined populations
.
Eur J Haematol
.
2009
;
82
(
2
):
106
-
111
.
13.
Rampal
R
,
Ahn
J
,
Abdel-Wahab
O
, et al
.
Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms
.
Proc Natl Acad Sci USA
.
2014
;
111
(
50
):
E5401
-
E5410
.
14.
Thoennissen
NH
,
Krug
UO
,
Lee
DH
, et al
.
Prevalence and prognostic impact of allelic imbalances associated with leukemic transformation of Philadelphia chromosome-negative myeloproliferative neoplasms
.
Blood
.
2010
;
115
(
14
):
2882
-
2890
.
15.
Milosevic
JD
,
Puda
A
,
Malcovati
L
, et al
.
Clinical significance of genetic aberrations in secondary acute myeloid leukemia
.
Am J Hematol
.
2012
;
87
(
11
):
1010
-
1016
.
16.
Granfeldt Østgård
LS
,
Medeiros
BC
,
Sengeløv
H
, et al
.
Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study
.
J Clin Oncol
.
2015
;
33
(
31
):
3641
-
3649
.
17.
Koh
Y
,
Kim
I
,
Bae
JY
, et al
.
Prognosis of secondary acute myeloid leukemia is affected by the type of the preceding hematologic disorders and the presence of trisomy 8
.
Jpn J Clin Oncol
.
2010
;
40
(
11
):
1037
-
1045
.
18.
Tefferi
A
,
Mudireddy
M
,
Mannelli
F
, et al
.
Blast phase myeloproliferative neoplasm: Mayo-AGIMM study of 410 patients from two separate cohorts
.
Leukemia
.
2018
;
32
(
5
):
1200
-
1210
.
19.
Cahu
X
,
Chevallier
P
,
Clavert
A
, et al
.
Allo-SCT for Philadelphia-negative myeloproliferative neoplasms in blast phase: a study from the Societe Française de Greffe de Moelle et de Therapie Cellulaire (SFGM-TC)
.
Bone Marrow Transplant
.
2014
;
49
(
6
):
756
-
760
.
20.
Grinfeld
J
,
Nangalia
J
,
Baxter
EJ
, et al
.
Classification and personalized prognosis in myeloproliferative neoplasms
.
N Engl J Med
.
2018
;
379
(
15
):
1416
-
1430
.
21.
Tefferi
A
,
Guglielmelli
P
,
Lasho
TL
, et al
.
MIPSS70+ version 2.0: mutation and karyotype-enhanced International Prognostic Scoring System for primary myelofibrosis
.
J Clin Oncol
.
2018
;
36
(
17
):
1769
-
1770
.
22.
Tefferi
A
,
Guglielmelli
P
,
Nicolosi
M
, et al
.
GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis
.
Leukemia
.
2018
;
32
(
7
):
1631
-
1642
.
23.
Guglielmelli
P
,
Lasho
TL
,
Rotunno
G
, et al
.
MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis
.
J Clin Oncol
.
2018
;
36
(
4
):
310
-
318
.
24.
Gangat
N
,
Caramazza
D
,
Vaidya
R
, et al
.
DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status
.
J Clin Oncol
.
2011
;
29
(
4
):
392
-
397
.
25.
Mesa
RA
,
Li
CY
,
Ketterling
RP
,
Schroeder
GS
,
Knudson
RA
,
Tefferi
A
.
Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases
.
Blood
.
2005
;
105
(
3
):
973
-
977
.
26.
Kennedy
JA
,
Atenafu
EG
,
Messner
HA
, et al
.
Treatment outcomes following leukemic transformation in Philadelphia-negative myeloproliferative neoplasms
.
Blood
.
2013
;
121
(
14
):
2725
-
2733
.
27.
Noor
SJ
,
Tan
W
,
Wilding
GE
, et al
.
Myeloid blastic transformation of myeloproliferative neoplasms--a review of 112 cases
.
Leuk Res
.
2011
;
35
(
5
):
608
-
613
.
28.
Huang
J
,
Li
CY
,
Mesa
RA
, et al
.
Risk factors for leukemic transformation in patients with primary myelofibrosis
.
Cancer
.
2008
;
112
(
12
):
2726
-
2732
.
29.
Passamonti
F
,
Rumi
E
,
Elena
C
, et al
.
Incidence of leukaemia in patients with primary myelofibrosis and RBC-transfusion-dependence
.
Br J Haematol
.
2010
;
150
(
6
):
719
-
721
.
30.
Tefferi
A
,
Mesa
RA
,
Pardanani
A
, et al
.
Red blood cell transfusion need at diagnosis adversely affects survival in primary myelofibrosis-increased serum ferritin or transfusion load does not
.
Am J Hematol
.
2009
;
84
(
5
):
265
-
267
.
31.
Finazzi
G
,
Caruso
V
,
Marchioli
R
, et al;
ECLAP Investigators
.
Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study
.
Blood
.
2005
;
105
(
7
):
2664
-
2670
.
32.
Berk
PD
,
Goldberg
JD
,
Silverstein
MN
, et al
.
Increased incidence of acute leukemia in polycythemia vera associated with chlorambucil therapy
.
N Engl J Med
.
1981
;
304
(
8
):
441
-
447
.
33.
Nielsen
I
,
Hasselbalch
HC
.
Acute leukemia and myelodysplasia in patients with a Philadelphia chromosome negative chronic myeloproliferative disorder treated with hydroxyurea alone or with hydroxyurea after busulphan
.
Am J Hematol
.
2003
;
74
(
1
):
26
-
31
.
34.
Kiladjian
JJ
,
Chevret
S
,
Dosquet
C
,
Chomienne
C
,
Rain
JD
.
Treatment of polycythemia vera with hydroxyurea and pipobroman: final results of a randomized trial initiated in 1980
.
J Clin Oncol
.
2011
;
29
(
29
):
3907
-
3913
.
35.
Björkholm
M
,
Derolf
AR
,
Hultcrantz
M
, et al
.
Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms
.
J Clin Oncol
.
2011
;
29
(
17
):
2410
-
2415
.
36.
Quintás-Cardama
A
,
Kantarjian
H
,
Pierce
S
,
Cortes
J
,
Verstovsek
S
.
Prognostic model to identify patients with myelofibrosis at the highest risk of transformation to acute myeloid leukemia
.
Clin Lymphoma Myeloma Leuk
.
2013
;
13
(
3
):
315
-
318.e2
.
37.
Barbui
T
,
Tefferi
A
,
Vannucchi
AM
, et al
.
Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet
.
Leukemia
.
2018
;
32
(
5
):
1057
-
1069
.
38.
National Comprehensive Cancer Network
.
Myeloproliferative neoplasms (version 2.2019)
. https://www.nccn.org/professionals/physician_gls/pdf/mpn.pdf
. Accessed 3 January 2020
.
39.
Gangat
N
,
Wolanskyj
AP
,
McClure
RF
, et al
.
Risk stratification for survival and leukemic transformation in essential thrombocythemia: a single institutional study of 605 patients
.
Leukemia
.
2007
;
21
(
2
):
270
-
276
.
40.
Tam
CS
,
Kantarjian
H
,
Cortes
J
, et al
.
Dynamic model for predicting death within 12 months in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis
.
J Clin Oncol
.
2009
;
27
(
33
):
5587
-
5593
.
41.
Tefferi
A
,
Nicolosi
M
,
Mudireddy
M
, et al
.
Driver mutations and prognosis in primary myelofibrosis: Mayo-Careggi MPN alliance study of 1,095 patients
.
Am J Hematol
.
2018
;
93
(
3
):
348
-
355
.
42.
Tefferi
A
,
Lasho
TL
,
Finke
CM
, et al
.
CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons
.
Leukemia
.
2014
;
28
(
7
):
1472
-
1477
.
43.
Barosi
G
,
Ambrosetti
A
,
Buratti
A
, et al
.
Splenectomy for patients with myelofibrosis with myeloid metaplasia: pretreatment variables and outcome prediction
.
Leukemia
.
1993
;
7
(
2
):
200
-
206
.
44.
Barosi
G
,
Ambrosetti
A
,
Centra
A
, et al;
Italian Cooperative Study Group on Myeloid with Myeloid Metaplasia
.
Splenectomy and risk of blast transformation in myelofibrosis with myeloid metaplasia
.
Blood
.
1998
;
91
(
10
):
3630
-
3636
.
45.
Lafaye
F
,
Rain
JD
,
Clot
P
,
Najean
Y
.
Risks and benefits of splenectomy in myelofibrosis: an analysis of 39 cases
.
Nouv Rev Fr Hematol
.
1994
;
36
(
5
):
359
-
362
.
46.
Tefferi
A
,
Mesa
RA
,
Nagorney
DM
,
Schroeder
G
,
Silverstein
MN
.
Splenectomy in myelofibrosis with myeloid metaplasia: a single-institution experience with 223 patients
.
Blood
.
2000
;
95
(
7
):
2226
-
2233
.
47.
Tefferi
A
,
Vaidya
R
,
Caramazza
D
,
Finke
C
,
Lasho
T
,
Pardanani
A
.
Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study
.
J Clin Oncol
.
2011
;
29
(
10
):
1356
-
1363
.
48.
Barbui
T
,
Carobbio
A
,
Finazzi
G
, et al
.
Elevated C-reactive protein is associated with shortened leukemia-free survival in patients with myelofibrosis
.
Leukemia
.
2013
;
27
(
10
):
2084
-
2086
.
49.
Reilly
JT
.
Pathogenetic insight and prognostic information from standard and molecular cytogenetic studies in the BCR-ABL-negative myeloproliferative neoplasms (MPNs)
.
Leukemia
.
2008
;
22
(
10
):
1818
-
1827
.
50.
Gangat
N
,
Tefferi
A
,
Thanarajasingam
G
, et al
.
Cytogenetic abnormalities in essential thrombocythemia: prevalence and prognostic significance
.
Eur J Haematol
.
2009
;
83
(
1
):
17
-
21
.
51.
Tefferi
A
,
Mesa
RA
,
Schroeder
G
,
Hanson
CA
,
Li
CY
,
Dewald
GW
.
Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia
.
Br J Haematol
.
2001
;
113
(
3
):
763
-
771
.
52.
Tefferi
A
,
Dingli
D
,
Li
CY
,
Dewald
GW
.
Prognostic diversity among cytogenetic abnormalities in myelofibrosis with myeloid metaplasia
.
Cancer
.
2005
;
104
(
8
):
1656
-
1660
.
53.
Andrieux
J
,
Demory
JL
,
Caulier
MT
, et al
.
Karyotypic abnormalities in myelofibrosis following polycythemia vera
.
Cancer Genet Cytogenet
.
2003
;
140
(
2
):
118
-
123
.
54.
Andrieux
JL
,
Demory
JL
.
Karyotype and molecular cytogenetic studies in polycythemia vera
.
Curr Hematol Rep
.
2005
;
4
(
3
):
224
-
229
.
55.
Caramazza
D
,
Begna
KH
,
Gangat
N
, et al
.
Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients
.
Leukemia
.
2011
;
25
(
1
):
82
-
88
.
56.
Vaidya
R
,
Caramazza
D
,
Begna
KH
, et al
.
Monosomal karyotype in primary myelofibrosis is detrimental to both overall and leukemia-free survival
.
Blood
.
2011
;
117
(
21
):
5612
-
5615
.
57.
Tefferi
A
,
Jimma
T
,
Gangat
N
, et al
.
Predictors of greater than 80% 2-year mortality in primary myelofibrosis: a Mayo Clinic study of 884 karyotypically annotated patients
.
Blood
.
2011
;
118
(
17
):
4595
-
4598
.
58.
Tefferi
A
,
Nicolosi
M
,
Mudireddy
M
, et al
.
Revised cytogenetic risk stratification in primary myelofibrosis: analysis based on 1002 informative patients
.
Leukemia
.
2018
;
32
(
5
):
1189
-
1199
.
59.
Tefferi
A
,
Lasho
TL
,
Guglielmelli
P
, et al
.
Targeted deep sequencing in polycythemia vera and essential thrombocythemia
.
Blood Adv
.
2016
;
1
(
1
):
21
-
30
.
60.
Lundberg
P
,
Karow
A
,
Nienhold
R
, et al
.
Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms
.
Blood
.
2014
;
123
(
14
):
2220
-
2228
.
61.
McNamara
CJ
,
Panzarella
T
,
Kennedy
JA
, et al
.
The mutational landscape of accelerated- and blast-phase myeloproliferative neoplasms impacts patient outcomes
.
Blood Adv
.
2018
;
2
(
20
):
2658
-
2671
.
62.
Vannucchi
AM
,
Lasho
TL
,
Guglielmelli
P
, et al
.
Mutations and prognosis in primary myelofibrosis
.
Leukemia
.
2013
;
27
(
9
):
1861
-
1869
.
63.
Courtier
F
,
Carbuccia
N
,
Garnier
S
, et al
.
Genomic analysis of myeloproliferative neoplasms in chronic and acute phases
.
Haematologica
.
2017
;
102
(
1
):
e11
-
e14
.
64.
Lasho
TL
,
Mudireddy
M
,
Finke
CM
, et al
.
Targeted next-generation sequencing in blast phase myeloproliferative neoplasms
.
Blood Adv
.
2018
;
2
(
4
):
370
-
380
.
65.
Abdel-Wahab
O
,
Manshouri
T
,
Patel
J
, et al
.
Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias
.
Cancer Res
.
2010
;
70
(
2
):
447
-
452
.
66.
Tefferi
A
,
Lasho
TL
,
Finke
CM
, et al
.
Targeted deep sequencing in primary myelofibrosis
.
Blood Adv
.
2016
;
1
(
2
):
105
-
111
.
67.
Lasho
TL
,
Jimma
T
,
Finke
CM
, et al
.
SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival
.
Blood
.
2012
;
120
(
20
):
4168
-
4171
.
68.
Green
A
,
Beer
P
.
Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms
.
N Engl J Med
.
2010
;
362
(
4
):
369
-
370
.
69.
Zhang
SJ
,
Rampal
R
,
Manshouri
T
, et al
.
Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome
.
Blood
.
2012
;
119
(
19
):
4480
-
4485
.
70.
Tefferi
A
,
Jimma
T
,
Sulai
NH
, et al
.
IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F
.
Leukemia
.
2012
;
26
(
3
):
475
-
480
.
71.
Venton
G
,
Courtier
F
,
Charbonnier
A
, et al
.
Impact of gene mutations on treatment response and prognosis of acute myeloid leukemia secondary to myeloproliferative neoplasms
.
Am J Hematol
.
2018
;
93
(
3
):
330
-
338
.
72.
Ding
Y
,
Harada
Y
,
Imagawa
J
,
Kimura
A
,
Harada
H
.
AML1/RUNX1 point mutation possibly promotes leukemic transformation in myeloproliferative neoplasms
.
Blood
.
2009
;
114
(
25
):
5201
-
5205
.
73.
Guglielmelli
P
,
Lasho
TL
,
Rotunno
G
, et al
.
The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients
.
Leukemia
.
2014
;
28
(
9
):
1804
-
1810
.
74.
Patel
KP
,
Newberry
KJ
,
Luthra
R
, et al
.
Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib
.
Blood
.
2015
;
126
(
6
):
790
-
797
.
75.
Kralovics
R
,
Teo
SS
,
Li
S
, et al
.
Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders
.
Blood
.
2006
;
108
(
4
):
1377
-
1380
.
76.
Schaub
FX
,
Jäger
R
,
Looser
R
, et al
.
Clonal analysis of deletions on chromosome 20q and JAK2-V617F in MPD suggests that del20q acts independently and is not one of the predisposing mutations for JAK2-V617F
.
Blood
.
2009
;
113
(
9
):
2022
-
2027
.
77.
Rodriguez-Meira
A
,
Buck
G
,
Clark
S-A
, et al
.
Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing
.
Mol Cell
.
2019
;
73
(
6
):
1292
-
1305.e8
.
78.
Ortmann
CA
,
Kent
DG
,
Nangalia
J
, et al
.
Effect of mutation order on myeloproliferative neoplasms
.
N Engl J Med
.
2015
;
372
(
7
):
601
-
612
.
79.
Nangalia
J
,
Green
AR
.
Myeloproliferative neoplasms: from origins to outcomes
.
Blood
.
2017
;
130
(
23
):
2475
-
2483
.
80.
Li
B
,
Mascarenhas
JO
,
Rampal
RK
.
Leukemic transformation of myeloproliferative neoplasms: therapeutic and genomic considerations
.
Curr Hematol Malig Rep
.
2018
;
13
(
6
):
588
-
595
.
81.
Dunbar
A
,
Nazir
A
,
Levine
R
.
Overview of transgenic mouse models of myeloproliferative neoplasms (MPNs)
.
Curr Protoc Pharmacol
.
2017
;
77
:
14.40.1
-
14.40.9
.
82.
Theocharides
A
,
Boissinot
M
,
Girodon
F
, et al
.
Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation
.
Blood
.
2007
;
110
(
1
):
375
-
379
.
83.
Campbell
PJ
,
Baxter
EJ
,
Beer
PA
, et al
.
Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation
.
Blood
.
2006
;
108
(
10
):
3548
-
3555
.
84.
Beer
PA
,
Delhommeau
F
,
LeCouédic
JP
, et al
.
Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm
.
Blood
.
2010
;
115
(
14
):
2891
-
2900
.
85.
Kubesova
B
,
Pavlova
S
,
Malcikova
J
, et al
.
Low-burden TP53 mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and JAK2 mutational status
.
Leukemia
.
2018
;
32
(
2
):
450
-
461
.
86.
Tsuruta-Kishino
T
,
Koya
J
,
Kataoka
K
, et al
.
Loss of p53 induces leukemic transformation in a murine model of Jak2 V617F-driven polycythemia vera
.
Oncogene
.
2017
;
36
(
23
):
3300
-
3311
.
87.
Mascarenhas
J
,
Navada
S
,
Malone
A
,
Rodriguez
A
,
Najfeld
V
,
Hoffman
R
.
Therapeutic options for patients with myelofibrosis in blast phase
.
Leuk Res
.
2010
;
34
(
9
):
1246
-
1249
.
88.
Cherington
C
,
Slack
JL
,
Leis
J
, et al
.
Allogeneic stem cell transplantation for myeloproliferative neoplasm in blast phase
.
Leuk Res
.
2012
;
36
(
9
):
1147
-
1151
.
89.
Alchalby
H
,
Zabelina
T
,
Stübig
T
, et al;
Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation
.
Allogeneic stem cell transplantation for myelofibrosis with leukemic transformation: a study from the Myeloproliferative Neoplasm Subcommittee of the CMWP of the European Group for Blood and Marrow Transplantation
.
Biol Blood Marrow Transplant
.
2014
;
20
(
2
):
279
-
281
.
90.
Takagi
S
,
Masuoka
K
,
Uchida
N
, et al
.
Allogeneic hematopoietic cell transplantation for leukemic transformation preceded by Philadelphia chromosome-negative myeloproliferative neoplasms: a nationwide survey by the Adult Acute Myeloid Leukemia Working Group of the Japan Society for Hematopoietic Cell Transplantation
.
Biol Blood Marrow Transplant
.
2016
;
22
(
12
):
2208
-
2213
.
91.
Ciurea
SO
,
de Lima
M
,
Giralt
S
, et al
.
Allogeneic stem cell transplantation for myelofibrosis with leukemic transformation
.
Biol Blood Marrow Transplant
.
2010
;
16
(
4
):
555
-
559
.
92.
Chihara
DKH
,
Newberry
KJ
, et al
.
Survival outcome of patients with acute myeloid leukemia transformed from myeloproliferative neoplasms [abstract]
.
Blood
.
2016
;
128
(
22
). Abstract
1940
.
93.
Passamonti
F
,
Rumi
E
,
Arcaini
L
, et al
.
Leukemic transformation of polycythemia vera: a single center study of 23 patients
.
Cancer
.
2005
;
104
(
5
):
1032
-
1036
.
94.
Andriani
A
,
Montanaro
M
,
Voso
MT
, et al
.
Azacytidine for the treatment of retrospective analysis from the Gruppo Laziale for the study of Ph-negative MPN
.
Leuk Res
.
2015
;
39
(
8
):
801
-
804
.
95.
Wang
JC
,
Chen
W
,
Nallusamy
S
,
Chen
C
,
Novetsky
AD
.
Hypermethylation of the P15INK4b and P16INK4a in agnogenic myeloid metaplasia (AMM) and AMM in leukaemic transformation
.
Br J Haematol
.
2002
;
116
(
3
):
582
-
586
.
96.
Badar
T
,
Kantarjian
HM
,
Ravandi
F
, et al
.
Therapeutic benefit of decitabine, a hypomethylating agent, in patients with high-risk primary myelofibrosis and myeloproliferative neoplasm in accelerated or blastic/acute myeloid leukemia phase
.
Leuk Res
.
2015
;
39
(
9
):
950
-
956
.
97.
Eghtedar
A
,
Verstovsek
S
,
Estrov
Z
, et al
.
Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia
.
Blood
.
2012
;
119
(
20
):
4614
-
4618
.
98.
Pemmaraju
N
,
Kantarjian
H
,
Kadia
T
, et al
.
A phase I/II study of the Janus kinase (JAK)1 and 2 inhibitor ruxolitinib in patients with relapsed or refractory acute myeloid leukemia
.
Clin Lymphoma Myeloma Leuk
.
2015
;
15
(
3
):
171
-
176
.
99.
Rampal
RK
,
Mascarenhas
JO
,
Kosiorek
HE
, et al
.
Safety and efficacy of combined ruxolitinib and decitabine in accelerated and blast-phase myeloproliferative neoplasms
.
Blood Adv
.
2018
;
2
(
24
):
3572
-
3580
.
100.
Stein
EM
,
DiNardo
CD
,
Pollyea
DA
, et al
.
Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia
.
Blood
.
2017
;
130
(
6
):
722
-
731
.
101.
Amatangelo
MD
,
Quek
L
,
Shih
A
, et al
.
Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response
.
Blood
.
2017
;
130
(
6
):
732
-
741
.
102.
DiNardo
CD
,
Stein
EM
,
de Botton
S
, et al
.
Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML
.
N Engl J Med
.
2018
;
378
(
25
):
2386
-
2398
.
103.
McKenney
AS
,
Lau
AN
,
Somasundara
AVH
, et al
.
JAK2/IDH-mutant-driven myeloproliferative neoplasm is sensitive to combined targeted inhibition
.
J Clin Invest
.
2018
;
128
(
2
):
789
-
804
.
104.
Cahill
K
,
Patel
AA
,
Liu
H
, et al
.
Outcomes of IDH-mutated advanced phase Ph-negative myeloproliferative neoplasms treated with IDH inhibitors [abstract]
.
Blood
.
2019
;
134
(
suppl 1
). Abstract
4176
.
105.
Abedin
SM
,
Boddy
CS
,
Munshi
HG
.
BET inhibitors in the treatment of hematologic malignancies: current insights and future prospects
.
OncoTargets Ther
.
2016
;
9
:
5943
-
5953
.
106.
Saenz
DT
,
Fiskus
W
,
Manshouri
T
, et al
.
BET protein bromodomain inhibitor-based combinations are highly active against post-myeloproliferative neoplasm secondary AML cells
.
Leukemia
.
2017
;
31
(
3
):
678
-
687
.
107.
Kleppe
M
,
Koche
R
,
Zou
L
, et al
.
Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms [published correction appears in Cancer Cell. 2018;33(4):785-787]
.
Cancer Cell
.
2018
;
33
(
1
):
29
-
43.e7
.
108.
DiNardo
CD
,
Pratz
K
,
Pullarkat
V
, et al
.
Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia
.
Blood
.
2019
;
133
(
1
):
7
-
17
.
109.
Pollyea
DA
,
Stevens
BM
,
Jones
CL
, et al
.
Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia
.
Nat Med
.
2018
;
24
(
12
):
1859
-
1866
.
110.
Zhao
R
,
Follows
GA
,
Beer
PA
, et al
.
Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders
.
N Engl J Med
.
2008
;
359
(
26
):
2778
-
2789
.
111.
Waibel
M
,
Solomon
VS
,
Knight
DA
, et al
.
Combined targeting of JAK2 and Bcl-2/Bcl-xL to cure mutant JAK2-driven malignancies and overcome acquired resistance to JAK2 inhibitors
.
Cell Rep
.
2013
;
5
(
4
):
1047
-
1059
.
112.
Prestipino
A
,
Emhardt
AJ
,
Aumann
K
, et al
.
Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms
.
Sci Transl Med
.
2018
;
10
(
429
):
eaam7729
.
113.
Patel
JP
,
Gönen
M
,
Figueroa
ME
, et al
.
Prognostic relevance of integrated genetic profiling in acute myeloid leukemia
.
N Engl J Med
.
2012
;
366
(
12
):
1079
-
1089
.
114.
Thepot
S
,
Itzykson
R
,
Seegers
V
, et al;
Groupe Francophone des Myelodysplasies (GFM)
.
Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: a report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM)
.
Blood
.
2010
;
116
(
19
):
3735
-
3742
.
You do not currently have access to this content.