Key Points

  • E2A-PBX1, through direct interactions, serves as a coactivator for RUNX1 in the development of pre-B ALL.

  • The E2A-PBX1 transcriptome includes RUNX1, indicating an E2A-PBX1 role in pre-B ALL through enhancement of the RUNX1 autoregulatory loop.

Abstract

E2A, a basic helix-loop-helix transcription factor, plays a crucial role in determining tissue-specific cell fate, including differentiation of B-cell lineages. In 5% of childhood acute lymphoblastic leukemia (ALL), the t(1,19) chromosomal translocation specifically targets the E2A gene and produces an oncogenic E2A-PBX1 fusion protein. Although previous studies have shown the oncogenic functions of E2A-PBX1 in cell and animal models, the E2A-PBX1–enforced cistrome, the E2A-PBX1 interactome, and related mechanisms underlying leukemogenesis remain unclear. Here, by unbiased genomic profiling approaches, we identify the direct target sites of E2A-PBX1 in t(1,19)–positive pre-B ALL cells and show that, compared with normal E2A, E2A-PBX1 preferentially binds to a subset of gene loci cobound by RUNX1 and gene-activating machineries (p300, MED1, and H3K27 acetylation). Using biochemical analyses, we further document a direct interaction of E2A-PBX1, through a region spanning the PBX1 homeodomain, with RUNX1. Our results also show that E2A-PBX1 binding to gene enhancers is dependent on the RUNX1 interaction but not the DNA-binding activity harbored within the PBX1 homeodomain of E2A-PBX1. Transcriptome analyses and cell transformation assays further establish a significant RUNX1 requirement for E2A-PBX1–mediated target gene activation and leukemogenesis. Notably, the RUNX1 locus itself is also directly activated by E2A-PBX1, indicating a multilayered interplay between E2A-PBX1 and RUNX1. Collectively, our study provides the first unbiased profiling of the E2A-PBX1 cistrome in pre-B ALL cells and reveals a previously unappreciated pathway in which E2A-PBX1 acts in concert with RUNX1 to enforce transcriptome alterations for the development of pre-B ALL.

REFERENCES

REFERENCES
1.
Quong
MW
,
Romanow
WJ
,
Murre
C
.
E protein function in lymphocyte development
.
Annu Rev Immunol
.
2002
;
20
(
1
):
301
-
322
.
2.
Greenbaum
S
,
Zhuang
Y
.
Regulation of early lymphocyte development by E2A family proteins
.
Semin Immunol
.
2002
;
14
(
6
):
405
-
414
.
3.
Kee
BL
,
Quong
MW
,
Murre
C
.
E2A proteins: essential regulators at multiple stages of B-cell development
.
Immunol Rev
.
2000
;
175
(
1
):
138
-
149
.
4.
Nutt
SL
,
Kee
BL
.
The transcriptional regulation of B cell lineage commitment
.
Immunity
.
2007
;
26
(
6
):
715
-
725
.
5.
Lin
YC
,
Jhunjhunwala
S
,
Benner
C
, et al
.
A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate
.
Nat Immunol
.
2010
;
11
(
7
):
635
-
643
.
6.
Bain
G
,
Maandag
EC
,
Izon
DJ
, et al
.
E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements
.
Cell
.
1994
;
79
(
5
):
885
-
892
.
7.
Zhuang
Y
,
Soriano
P
,
Weintraub
H
.
The helix-loop-helix gene E2A is required for B cell formation
.
Cell
.
1994
;
79
(
5
):
875
-
884
.
8.
Chen
WY
,
Zhang
J
,
Geng
H
,
Du
Z
,
Nakadai
T
,
Roeder
RGA
.
A TAF4 coactivator function for E proteins that involves enhanced TFIID binding
.
Genes Dev
.
2013
;
27
(
14
):
1596
-
1609
.
9.
Denis
CM
,
Langelaan
DN
,
Kirlin
AC
, et al
.
Functional redundancy between the transcriptional activation domains of E2A is mediated by binding to the KIX domain of CBP/p300
.
Nucleic Acids Res
.
2014
;
42
(
11
):
7370
-
7382
.
10.
Murre
C
,
McCaw
PS
,
Baltimore
D
.
A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins
.
Cell
.
1989
;
56
(
5
):
777
-
783
.
11.
Shen
CP
,
Kadesch
T
.
B-cell-specific DNA binding by an E47 homodimer
.
Mol Cell Biol
.
1995
;
15
(
8
):
4518
-
4524
.
12.
Kamps
MP
,
Murre
C
,
Sun
XH
,
Baltimore
D
.
A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL
.
Cell
.
1990
;
60
(
4
):
547
-
555
.
13.
Nourse
J
,
Mellentin
JD
,
Galili
N
, et al
.
Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor
.
Cell
.
1990
;
60
(
4
):
535
-
545
.
14.
Hunger
SP
,
Ohyashiki
K
,
Toyama
K
,
Cleary
ML
.
Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia
.
Genes Dev
.
1992
;
6
(
9
):
1608
-
1620
.
15.
Inaba
T
,
Roberts
WM
,
Shapiro
LH
, et al
.
Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia
.
Science
.
1992
;
257
(
5069
):
531
-
534
.
16.
Hunger
SP
,
Brown
R
,
Cleary
ML
.
DNA-binding and transcriptional regulatory properties of hepatic leukemia factor (HLF) and the t(17;19) acute lymphoblastic leukemia chimera E2A-HLF
.
Mol Cell Biol
.
1994
;
14
(
9
):
5986
-
5996
.
17.
LeBrun
DP
,
Cleary
ML
.
Fusion with E2A alters the transcriptional properties of the homeodomain protein PBX1 in t(1;19) leukemias
.
Oncogene
.
1994
;
9
(
6
):
1641
-
1647
.
18.
Monica
K
,
LeBrun
DP
,
Dedera
DA
,
Brown
R
,
Cleary
ML
.
Transformation properties of the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the Pbx1 homeodomain is dispensable
.
Mol Cell Biol
.
1994
;
14
(
12
):
8304
-
8314
.
19.
Yoshihara
T
,
Inaba
T
,
Shapiro
LH
,
Kato
JY
,
Look
AT
.
E2A-HLF-mediated cell transformation requires both the trans-activation domains of E2A and the leucine zipper dimerization domain of HLF
.
Mol Cell Biol
.
1995
;
15
(
6
):
3247
-
3255
.
20.
Chang
CP
,
de Vivo
I
,
Cleary
ML
.
The Hox cooperativity motif of the chimeric oncoprotein E2a-Pbx1 is necessary and sufficient for oncogenesis
.
Mol Cell Biol
.
1997
;
17
(
1
):
81
-
88
.
21.
Shimada
M
,
Chen
WY
,
Nakadai
T
, et al
.
Gene-specific H1 eviction through a transcriptional activator →p300→NAP1→H1 pathway
.
Mol Cell
.
2019
;
74
:
268
-
283.e5
.
22.
Lu
R
,
Wang
P
,
Parton
T
, et al
.
Epigenetic perturbations by Arg882-mutated DNMT3A potentiate aberrant stem cell gene-expression program and acute leukemia development
.
Cancer Cell
.
2016
;
30
(
1
):
92
-
107
.
23.
Wang
GG
,
Song
J
,
Wang
Z
, et al
.
Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger
.
Nature
.
2009
;
459
(
7248
):
847
-
851
.
24.
Xu
B
,
On
DM
,
Ma
A
, et al
.
Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia
.
Blood
.
2015
;
125
(
2
):
346
-
357
.
25.
Lu
Q
,
Knoepfler
PS
,
Scheele
J
,
Wright
DD
,
Kamps
MP
.
Both Pbx1 and E2A-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine Hox genes, some of which are themselves oncogenes
.
Mol Cell Biol
.
1995
;
15
(
7
):
3786
-
3795
.
26.
Diakos
C
,
Xiao
Y
,
Zheng
S
,
Kager
L
,
Dworzak
M
,
Wiemels
JL
.
Direct and indirect targets of the E2A-PBX1 leukemia-specific fusion protein
.
PLoS One
.
2014
;
9
(
2
):
e87602
.
27.
McLean
CY
,
Bristor
D
,
Hiller
M
, et al
.
GREAT improves functional interpretation of cis-regulatory regions
.
Nat Biotechnol
.
2010
;
28
(
5
):
495
-
501
.
28.
Geng
H
,
Hurtz
C
,
Lenz
KB
, et al
.
Self-enforcing feedback activation between BCL6 and pre-B cell receptor signaling defines a distinct subtype of acute lymphoblastic leukemia
.
Cancer Cell
.
2015
;
27
(
3
):
409
-
425
.
29.
Niebuhr
B
,
Kriebitzsch
N
,
Fischer
M
, et al
.
Runx1 is essential at two stages of early murine B-cell development
.
Blood
.
2013
;
122
(
3
):
413
-
423
.
30.
Sood
R
,
Kamikubo
Y
,
Liu
P
.
Role of RUNX1 in hematological malignancies [published correction appears in Blood. 2018;131(3):373]
.
Blood
.
2017
;
129
(
15
):
2070
-
2082
.
31.
Prange
KHM
,
Mandoli
A
,
Kuznetsova
T
, et al
.
MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia
.
Oncogene
.
2017
;
36
(
23
):
3346
-
3356
.
32.
Wilkinson
AC
,
Ballabio
E
,
Geng
H
, et al
.
RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction
.
Cell Rep
.
2013
;
3
(
1
):
116
-
127
.
33.
Calvo
KR
,
Knoepfler
P
,
McGrath
S
,
Kamps
MP
.
An inhibitory switch derepressed by pbx, hox, and Meis/Prep1 partners regulates DNA-binding by pbx1 and E2a-pbx1 and is dispensable for myeloid immortalization by E2a-pbx1
.
Oncogene
.
1999
;
18
(
56
):
8033
-
8043
.
34.
Jeha
S
,
Pei
D
,
Raimondi
SC
, et al
.
Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1
.
Leukemia
.
2009
;
23
(
8
):
1406
-
1409
.
35.
Knoepfler
PS
,
Kamps
MP
.
The highest affinity DNA element bound by Pbx complexes in t(1;19) leukemic cells fails to mediate cooperative DNA-binding or cooperative transactivation by E2a-Pbx1 and class I Hox proteins—evidence for selective targetting of E2a-Pbx1 to a subset of Pbx-recognition elements
.
Oncogene
.
1997
;
14
(
21
):
2521
-
2531
.
36.
Lu
Q
,
Kamps
MP
.
Heterodimerization of Hox proteins with Pbx1 and oncoprotein E2a-Pbx1 generates unique DNA-binding specifities at nucleotides predicted to contact the N-terminal arm of the Hox homeodomain—demonstration of Hox-dependent targeting of E2a-Pbx1 in vivo
.
Oncogene
.
1997
;
14
(
1
):
75
-
83
.
37.
Sun
XJ
,
Wang
Z
,
Wang
L
, et al
.
A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis
.
Nature
.
2013
;
500
(
7460
):
93
-
97
.
38.
Martens
JH
,
Mandoli
A
,
Simmer
F
, et al
.
ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia
.
Blood
.
2012
;
120
(
19
):
4038
-
4048
.
39.
Wang
K
,
Wang
P
,
Shi
J
, et al
.
PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia
.
Cancer Cell
.
2010
;
17
(
2
):
186
-
197
.
40.
Bayly
R
,
Chuen
L
,
Currie
RA
, et al
.
E2A-PBX1 interacts directly with the KIX domain of CBP/p300 in the induction of proliferation in primary hematopoietic cells
.
J Biol Chem
.
2004
;
279
(
53
):
55362
-
55371
.
41.
Zhang
J
,
Kalkum
M
,
Yamamura
S
,
Chait
BT
,
Roeder
RG
.
E protein silencing by the leukemogenic AML1-ETO fusion protein
.
Science
.
2004
;
305
(
5688
):
1286
-
1289
.
42.
Denis
CM
,
Chitayat
S
,
Plevin
MJ
, et al
.
Structural basis of CBP/p300 recruitment in leukemia induction by E2A-PBX1
.
Blood
.
2012
;
120
(
19
):
3968
-
3977
.
43.
Liu
H
,
Huang
J
,
Peng
J
, et al
.
Upregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway
.
Mol Cancer
.
2015
;
14
(
1
):
59
.
44.
Li
Z
,
Zhu
W
,
Xiong
L
,
Yu
X
,
Chen
X
,
Lin
Q
.
Role of high expression levels of STK39 in the growth, migration and invasion of non-small cell type lung cancer cells
.
Oncotarget
.
2016
;
7
(
38
):
61366
-
61377
.
45.
Das
MK
,
Furu
K
,
Evensen
HF
,
Haugen
OP
,
Haugen
TB
.
Knockdown of SPRY4 and SPRY4-IT1 inhibits cell growth and phosphorylation of Akt in human testicular germ cell tumours
.
Sci Rep
.
2018
;
8
(
1
):
2462
.
46.
Cato
MH
,
Chintalapati
SK
,
Yau
IW
,
Omori
SA
,
Rickert
RC
.
Cyclin D3 is selectively required for proliferative expansion of germinal center B cells
.
Mol Cell Biol
.
2011
;
31
(
1
):
127
-
137
.
47.
Gallagher
E
,
Enzler
T
,
Matsuzawa
A
, et al
.
Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production
.
Nat Immunol
.
2007
;
8
(
1
):
57
-
63
.
48.
McWhirter
JR
,
Neuteboom
ST
,
Wancewicz
EV
,
Monia
BP
,
Downing
JR
,
Murre
C
.
Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia
.
Proc Natl Acad Sci U S A
.
1999
;
96
(
20
):
11464
-
11469
.
49.
Reya
T
,
O’Riordan
M
,
Okamura
R
, et al
.
Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism
.
Immunity
.
2000
;
13
(
1
):
15
-
24
.
50.
Parisi
S
,
Passaro
F
,
Aloia
L
, et al
.
Klf5 is involved in self-renewal of mouse embryonic stem cells
.
J Cell Sci
.
2008
;
121
(
pt 16
):
2629
-
2634
.
51.
Li
L
,
Fan
CMA
.
A CREB-MPP7-AMOT regulatory axis controls muscle stem cell expansion and self-renewal competence
.
Cell Rep
.
2017
;
21
(
5
):
1253
-
1266
.
52.
Charmsaz
S
,
Al-Ejeh
F
,
Yeadon
TM
, et al
.
EphA3 as a target for antibody immunotherapy in acute lymphoblastic leukemia
.
Leukemia
.
2017
;
31
(
8
):
1779
-
1787
.
53.
Malouf
C
,
Ottersbach
K
.
Molecular processes involved in B cell acute lymphoblastic leukaemia
.
Cell Mol Life Sci
.
2018
;
75
(
3
):
417
-
446
.
54.
Voon
DC
,
Hor
YT
,
Ito
Y
.
The RUNX complex: reaching beyond haematopoiesis into immunity
.
Immunology
.
2015
;
146
(
4
):
523
-
536
.
55.
Ito
Y
,
Bae
SC
,
Chuang
LS
.
The RUNX family: developmental regulators in cancer
.
Nat Rev Cancer
.
2015
;
15
(
2
):
81
-
95
.
56.
North
TE
,
Stacy
T
,
Matheny
CJ
,
Speck
NA
,
de Bruijn
MF
.
Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells
.
Stem Cells
.
2004
;
22
(
2
):
158
-
168
.
57.
North
TE
,
de Bruijn
MF
,
Stacy
T
, et al
.
Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo
.
Immunity
.
2002
;
16
(
5
):
661
-
672
.
58.
Erickson
P
,
Gao
J
,
Chang
KS
, et al
.
Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt
.
Blood
.
1992
;
80
(
7
):
1825
-
1831
.
59.
Ross
ME
,
Zhou
X
,
Song
G
, et al
.
Classification of pediatric acute lymphoblastic leukemia by gene expression profiling
.
Blood
.
2003
;
102
(
8
):
2951
-
2959
.
You do not currently have access to this content.