Key Points

  • Expression of Epo receptor or of a functionally more potent mutant (EpoRm) promotes T-cell survival and proliferation.

  • EpoRm expression endows CAR T cells with superior antitumor activity, an approach that could be applied to other adoptive T-cell therapies.

Abstract

In adoptive T-cell immunotherapy of cancer, expansion and persistence of effector cells is a key determinant of response. We tested whether T lymphocytes could be rendered sensitive to erythropoietin (Epo) through ectopic expression of its wild-type receptor or a truncated form (EpoRm), which augments Epo signaling in erythrocyte progenitors. Both receptors could be expressed in human T lymphocytes; Epo ligation induced STAT5 phosphorylation, which was abrogated by nontoxic concentrations of the JAK1/2 inhibitor ruxolitinib. EpoRm had higher expression and triggered more potent stimulation than its wild-type counterpart, including superior T-cell survival and proliferation. Using a bicistronic vector, we expressed EpoRm together with an anti–CD19-41BB-CD3ζ chimeric antigen receptor (CAR), while maintaining the functions of each receptor. In the presence of Epo, EpoRm-CAR T cells had greater ex vivo expansion than CAR T cells and killed CD19+ leukemic cells more effectively in long-term cultures. In immunodeficient mice, physiologic levels of murine Epo were sufficient to preferentially expand EpoRm-CAR T cells, yielding a significantly higher antileukemic activity. Thus, outfitting adoptive T cells with EpoRm should yield greater effector-to-target ratios with a smaller number of infused cells; Epo or ruxolitinib administration could be used to adjust their levels postinfusion, maximizing antitumor activity and minimizing toxicity.

REFERENCES

REFERENCES
1.
Rosenberg
SA
,
Restifo
NP
.
Adoptive cell transfer as personalized immunotherapy for human cancer
.
Science
.
2015
;
348
(
6230
):
62
-
68
.
2.
June
CH
,
Sadelain
M
.
Chimeric antigen receptor therapy
.
N Engl J Med
.
2018
;
379
(
1
):
64
-
73
.
3.
Kochenderfer
JN
,
Wilson
WH
,
Janik
JE
, et al
.
Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19
.
Blood
.
2010
;
116
(
20
):
4099
-
4102
.
4.
Porter
DL
,
Levine
BL
,
Kalos
M
,
Bagg
A
,
June
CH
.
Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia
.
N Engl J Med
.
2011
;
365
(
8
):
725
-
733
.
5.
Maude
SL
,
Frey
N
,
Shaw
PA
, et al
.
Chimeric antigen receptor T cells for sustained remissions in leukemia
.
N Engl J Med
.
2014
;
371
(
16
):
1507
-
1517
.
6.
Davila
ML
,
Riviere
I
,
Wang
X
, et al
.
Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia
.
Sci Transl Med
.
2014
;
6
(
224
):
224ra25
.
7.
Kochenderfer
JN
,
Dudley
ME
,
Kassim
SH
, et al
.
Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor
.
J Clin Oncol
.
2015
;
33
(
6
):
540
-
549
.
8.
Lee
DW
,
Kochenderfer
JN
,
Stetler-Stevenson
M
, et al
.
T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial
.
Lancet
.
2015
;
385
(
9967
):
517
-
528
.
9.
Turtle
CJ
,
Hanafi
LA
,
Berger
C
, et al
.
CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients
.
J Clin Invest
.
2016
;
126
(
6
):
2123
-
2138
.
10.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
11.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
12.
Schuster
SJ
,
Bishop
MR
,
Tam
CS
, et al;
JULIET Investigators
.
Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma
.
N Engl J Med
.
2019
;
380
(
1
):
45
-
56
.
13.
Raje
N
,
Berdeja
J
,
Lin
Y
, et al
.
Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2019
;
380
(
18
):
1726
-
1737
.
14.
Campana
D
,
Schwarz
H
,
Imai
C
.
4-1BB chimeric antigen receptors
.
Cancer J
.
2014
;
20
(
2
):
134
-
140
.
15.
Long
AH
,
Haso
WM
,
Shern
JF
, et al
.
4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors
.
Nat Med
.
2015
;
21
(
6
):
581
-
590
.
16.
Zhao
Z
,
Condomines
M
,
van der Stegen
SJC
, et al
.
Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells
.
Cancer Cell
.
2015
;
28
(
4
):
415
-
428
.
17.
Besser
MJ
,
Shapira-Frommer
R
,
Schachter
J
.
Tumor-infiltrating lymphocytes: clinical experience
.
Cancer J
.
2015
;
21
(
6
):
465
-
469
.
18.
Lu
YC
,
Parker
LL
,
Lu
T
, et al
.
Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3
.
J Clin Oncol
.
2017
;
35
(
29
):
3322
-
3329
.
19.
Atkins
MB
.
Interleukin-2: clinical applications
.
Semin Oncol
.
2002
;
29
(
3 suppl 7
):
12
-
17
.
20.
Li
Y
,
Strick-Marchand
H
,
Lim
AI
, et al
.
Regulatory T cells control toxicity in a humanized model of IL-2 therapy
.
Nat Commun
.
2017
;
8
(
1
):
1762
.
21.
Matsuoka
K
,
Koreth
J
,
Kim
HT
, et al
.
Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease
.
Sci Transl Med
.
2013
;
5
(
179
):
179ra43
.
22.
Manabe
A
,
Coustan-Smith
E
,
Kumagai
M
, et al
.
Interleukin-4 induces programmed cell death (apoptosis) in cases of high-risk acute lymphoblastic leukemia
.
Blood
.
1994
;
83
(
7
):
1731
-
1737
.
23.
de la Chapelle
A
,
Träskelin
AL
,
Juvonen
E
.
Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis
.
Proc Natl Acad Sci U S A
.
1993
;
90
(
10
):
4495
-
4499
.
24.
Imai
C
,
Mihara
K
,
Andreansky
M
, et al
.
Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia
.
Leukemia
.
2004
;
18
(
4
):
676
-
684
.
25.
Szymczak-Workman
AL
,
Vignali
KM
,
Vignali
DA
.
Design and construction of 2A peptide-linked multicistronic vectors
.
Cold Spring Harb Protoc
.
2012
;
2012
(
2
):
199
-
204
.
26.
Png
YT
,
Vinanica
N
,
Kamiya
T
,
Shimasaki
N
,
Coustan-Smith
E
,
Campana
D
.
Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies
.
Blood Adv
.
2017
;
1
(
25
):
2348
-
2360
.
27.
Chang
YH
,
Connolly
J
,
Shimasaki
N
,
Mimura
K
,
Kono
K
,
Campana
D
.
A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells
.
Cancer Res
.
2013
;
73
(
6
):
1777
-
1786
.
28.
Gouilleux
F
,
Pallard
C
,
Dusanter-Fourt
I
, et al
.
Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity
.
EMBO J
.
1995
;
14
(
9
):
2005
-
2013
.
29.
Barber
DL
,
D’Andrea
AD
.
Erythropoietin and interleukin-2 activate distinct JAK kinase family members
.
Mol Cell Biol
.
1994
;
14
(
10
):
6506
-
6514
.
30.
Wakao
H
,
Harada
N
,
Kitamura
T
,
Mui
AL
,
Miyajima
A
.
Interleukin 2 and erythropoietin activate STAT5/MGF via distinct pathways
.
EMBO J
.
1995
;
14
(
11
):
2527
-
2535
.
31.
Witthuhn
BA
,
Quelle
FW
,
Silvennoinen
O
, et al
.
JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin
.
Cell
.
1993
;
74
(
2
):
227
-
236
.
32.
Kiladjian
JJ
,
Winton
EF
,
Talpaz
M
,
Verstovsek
S
.
Ruxolitinib for the treatment of patients with polycythemia vera
.
Expert Rev Hematol
.
2015
;
8
(
4
):
391
-
401
.
33.
Juvonen
E
,
Ikkala
E
,
Fyhrquist
F
,
Ruutu
T
.
Autosomal dominant erythrocytosis caused by increased sensitivity to erythropoietin
.
Blood
.
1991
;
78
(
11
):
3066
-
3069
.
34.
Meyer
SC
,
Levine
RL
.
Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors
.
Clin Cancer Res
.
2014
;
20
(
8
):
2051
-
2059
.
35.
Galson
DL
,
Tan
CC
,
Ratcliffe
PJ
,
Bunn
HF
.
Comparison of the human and mouse erythropoietin genes shows extensive homology in the flanking regions
.
Blood
.
1993
;
82
(
11
):
3321
-
3326
.
36.
Turtle
CJ
,
Hanafi
LA
,
Berger
C
, et al
.
Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells
.
Sci Transl Med
.
2016
;
8
(
355
):
355ra116
.
37.
Singh
N
,
Perazzelli
J
,
Grupp
SA
,
Barrett
DM
.
Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies
.
Sci Transl Med
.
2016
;
8
(
320
):
320ra3
.
38.
Nicolini
FE
,
Holyoake
TL
,
Cashman
JD
,
Chu
PP
,
Lambie
K
,
Eaves
CJ
.
Unique differentiation programs of human fetal liver stem cells shown both in vitro and in vivo in NOD/SCID mice
.
Blood
.
1999
;
94
(
8
):
2686
-
2695
.
39.
Noé
G
,
Riedel
W
,
Kubanek
B
,
Rich
IN
.
An ELISA specific for murine erythropoietin
.
Br J Haematol
.
1999
;
104
(
4
):
838
-
840
.
40.
Rinaudo
D
,
Toniatti
C
.
Sensitive ELISA for mouse erythropoietin
.
Biotechniques
.
2000
;
29
(
2
):
218
-
220
.
41.
Nielsen
OJ
.
Determination of human erythropoietin by radioimmunoassay. Method and clinical data
.
Clin Chim Acta
.
1988
;
176
(
3
):
303
-
313
.
42.
Cotes
PM
.
Immunoreactive erythropoietin in serum. I. Evidence for the validity of the assay method and the physiological relevance of estimates
.
Br J Haematol
.
1982
;
50
(
3
):
427
-
438
.
43.
Schlageter
MH
,
Toubert
ME
,
Podgorniak
MP
,
Najean
Y
.
Radioimmunoassay of erythropoietin: analytical performance and clinical use in hematology
.
Clin Chem
.
1990
;
36
(
10
):
1731
-
1735
.
44.
Schapira
L
,
Antin
JH
,
Ransil
BJ
, et al
.
Serum erythropoietin levels in patients receiving intensive chemotherapy and radiotherapy
.
Blood
.
1990
;
76
(
11
):
2354
-
2359
.
45.
de Klerk
G
,
Rosengarten
PC
,
Vet
RJ
,
Goudsmit
R
.
Serum erythropoietin (EST) titers in anemia
.
Blood
.
1981
;
58
(
6
):
1164
-
1170
.
46.
Minamoto
S
,
Treisman
J
,
Hankins
WD
,
Sugamura
K
,
Rosenberg
SA
.
Acquired erythropoietin responsiveness of interleukin-2-dependent T lymphocytes retrovirally transduced with genes encoding chimeric erythropoietin/interleukin-2 receptors
.
Blood
.
1995
;
86
(
6
):
2281
-
2287
.
47.
Lee
DW
,
Gardner
R
,
Porter
DL
, et al
.
Current concepts in the diagnosis and management of cytokine release syndrome [published correction appears in Blood. 2015;126(8):1048]
.
Blood
.
2014
;
124
(
2
):
188
-
195
.
48.
Maude
SL
,
Barrett
D
,
Teachey
DT
,
Grupp
SA
.
Managing cytokine release syndrome associated with novel T cell-engaging therapies
.
Cancer J
.
2014
;
20
(
2
):
119
-
122
.
49.
Park
JH
,
Geyer
MB
,
Brentjens
RJ
.
CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date
.
Blood
.
2016
;
127
(
26
):
3312
-
3320
.
50.
Brudno
JN
,
Kochenderfer
JN
.
Toxicities of chimeric antigen receptor T cells: recognition and management
.
Blood
.
2016
;
127
(
26
):
3321
-
3330
.
51.
Giavridis
T
,
van der Stegen
SJC
,
Eyquem
J
,
Hamieh
M
,
Piersigilli
A
,
Sadelain
M
.
CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade
.
Nat Med
.
2018
;
24
(
6
):
731
-
738
.
52.
Norelli
M
,
Camisa
B
,
Barbiera
G
, et al
.
Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells
.
Nat Med
.
2018
;
24
(
6
):
739
-
748
.
53.
Kudo
K
,
Imai
C
,
Lorenzini
P
, et al
.
T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing
.
Cancer Res
.
2014
;
74
(
1
):
93
-
103
.
54.
Hammerl
D
,
Rieder
D
,
Martens
JWM
,
Trajanoski
Z
,
Debets
R
.
Adoptive T cell therapy: new avenues leading to safe targets and powerful allies
.
Trends Immunol
.
2018
;
39
(
11
):
921
-
936
.
55.
Bertoletti
A
,
Tan
AT
,
Koh
S
.
T-cell therapy for chronic viral hepatitis
.
Cytotherapy
.
2017
;
19
(
11
):
1317
-
1324
.
You do not currently have access to this content.