Key Points

  • Human pluripotent stem cells provide a novel platform to produce engineered off-the-shelf NK cells with efficient antitumor activity.

  • Human iPSC-NK cells with high-affinity noncleavable CD16a enable antibodies to more efficiently target NK cells to diverse tumor types.

Abstract

Antibody-dependent cellular cytotoxicity (ADCC) is a key effector mechanism of natural killer (NK) cells that is mediated by therapeutic monoclonal antibodies (mAbs). This process is facilitated by the Fc receptor CD16a on human NK cells. CD16a appears to be the only activating receptor on NK cells that is cleaved by the metalloprotease a disintegrin and metalloproteinase-17 upon stimulation. We previously demonstrated that a point mutation of CD16a prevents this activation-induced surface cleavage. This noncleavable CD16a variant is now further modified to include the high-affinity noncleavable variant of CD16a (hnCD16) and was engineered into human induced pluripotent stem cells (iPSCs) to create a renewable source for human induced pluripotent stem cell–derived NK (hnCD16-iNK) cells. Compared with unmodified iNK cells and peripheral blood–derived NK (PB-NK) cells, hnCD16-iNK cells proved to be highly resistant to activation-induced cleavage of CD16a. We found that hnCD16-iNK cells were functionally mature and exhibited enhanced ADCC against multiple tumor targets. In vivo xenograft studies using a human B-cell lymphoma demonstrated that treatment with hnCD16-iNK cells and anti-CD20 mAb led to significantly improved regression of B-cell lymphoma compared with treatment utilizing anti-CD20 mAb with PB-NK cells or unmodified iNK cells. hnCD16-iNK cells, combined with anti-HER2 mAb, also mediated improved survival in an ovarian cancer xenograft model. Together, these findings show that hnCD16-iNK cells combined with mAbs are highly effective against hematologic malignancies and solid tumors that are typically resistant to NK cell–mediated killing, demonstrating the feasibility of producing a standardized off-the-shelf engineered NK cell therapy with improved ADCC properties to treat malignancies that are otherwise refractory.

REFERENCES

REFERENCES
1.
June
CH
,
O’Connor
RS
,
Kawalekar
OU
,
Ghassemi
S
,
Milone
MC
.
CAR T cell immunotherapy for human cancer
.
Science
.
2018
;
359
(
6382
):
1361
-
1365
.
2.
Miller
JS
,
Soignier
Y
,
Panoskaltsis-Mortari
A
, et al
.
Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer
.
Blood
.
2005
;
105
(
8
):
3051
-
3057
.
3.
Fang
F
,
Xiao
W
,
Tian
Z
.
NK cell-based immunotherapy for cancer
.
Semin Immunol
.
2017
;
31
:
37
-
54
.
4.
Handgretinger
R
,
Lang
P
,
André
MC
.
Exploitation of natural killer cells for the treatment of acute leukemia
.
Blood
.
2016
;
127
(
26
):
3341
-
3349
.
5.
Miller
JS
,
Lanier
LL
.
Natural killer cells in cancer immunotherapy
.
Annu Rev Cancer Biol
.
2019
;
3
(
1
):
77
-
103
.
6.
Björklund
AT
,
Carlsten
M
,
Sohlberg
E
, et al
.
Complete remission with reduction of high-risk clones following haploidentical NK-cell therapy against MDS and AML
.
Clin Cancer Res
.
2018
;
24
(
8
):
1834
-
1844
.
7.
Romee
R
,
Rosario
M
,
Berrien-Elliott
MM
, et al
.
Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia
.
Sci Transl Med
.
2016
;
8
(
357
):
357ra123
.
8.
Parkhurst
MR
,
Riley
JP
,
Dudley
ME
,
Rosenberg
SA
.
Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression
.
Clin Cancer Res
.
2011
;
17
(
19
):
6287
-
6297
.
9.
Chu
Y
,
Hochberg
J
,
Yahr
A
, et al
.
Targeting CD20+ aggressive B-cell non-Hodgkin lymphoma by anti-CD20 CAR mRNA-modified expanded natural killer cells in vitro and in NSG mice
.
Cancer Immunol Res
.
2015
;
3
(
4
):
333
-
344
.
10.
Geller
MA
,
Cooley
S
,
Judson
PL
, et al
.
A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer
.
Cytotherapy
.
2011
;
13
(
1
):
98
-
107
.
11.
Dolstra
H
,
Roeven
MWH
,
Spanholtz
J
, et al
.
Successful transfer of umbilical cord blood CD34+ hematopoietic stem and progenitor-derived NK cells in older acute myeloid leukemia patients
.
Clin Cancer Res
.
2017
;
23
(
15
):
4107
-
4118
.
12.
Williams
BA
,
Law
AD
,
Routy
B
, et al
.
A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy
.
Oncotarget
.
2017
;
8
(
51
):
89256
-
89268
.
13.
Klingemann
H
,
Boissel
L
,
Toneguzzo
F
.
Natural killer cells for immunotherapy - advantages of the NK-92 cell line over blood NK cells
.
Front Immunol
.
2016
;
7
:
91
.
14.
Shah
N
,
Li
L
,
McCarty
J
, et al
.
Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma
.
Br J Haematol
.
2017
;
177
(
3
):
457
-
466
.
15.
Iliopoulou
EG
,
Kountourakis
P
,
Karamouzis
MV
, et al
.
A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer
.
Cancer Immunol Immunother
.
2010
;
59
(
12
):
1781
-
1789
.
16.
Passweg
JR
,
Tichelli
A
,
Meyer-Monard
S
, et al
.
Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation
.
Leukemia
.
2004
;
18
(
11
):
1835
-
1838
.
17.
Sarvaria
A
,
Jawdat
D
,
Madrigal
JA
,
Saudemont
A
.
Umbilical cord blood natural killer cells, their characteristics, and potential clinical applications
.
Front Immunol
.
2017
;
8
:
329
.
18.
Carlsten
M
,
Childs
RW
.
Genetic manipulation of NK cells for cancer immunotherapy: techniques and clinical implications
.
Front Immunol
.
2015
;
6
:
266
.
19.
Bachanova
V
,
Cooley
S
,
Defor
TE
, et al
.
Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein
.
Blood
.
2014
;
123
(
25
):
3855
-
3863
.
20.
Knorr
DA
,
Ni
Z
,
Hermanson
D
, et al
.
Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy
.
Stem Cells Transl Med
.
2013
;
2
(
4
):
274
-
283
.
21.
Ni
Z
,
Knorr
DA
,
Bendzick
L
,
Allred
J
,
Kaufman
DS
.
Expression of chimeric receptor CD4ζ by natural killer cells derived from human pluripotent stem cells improves in vitro activity but does not enhance suppression of HIV infection in vivo
.
Stem Cells
.
2014
;
32
(
4
):
1021
-
1031
.
22.
Hermanson
DL
,
Bendzick
L
,
Pribyl
L
, et al
.
Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer
.
Stem Cells
.
2016
;
34
(
1
):
93
-
101
.
23.
Li
Y
,
Hermanson
DL
,
Moriarity
BS
,
Kaufman
DS
.
Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance antitumor activity
.
Cell Stem Cell
.
2018
;
23
(
2
):
181
-
192.e5
.
24.
Zhu
H
,
Lai
YS
,
Li
Y
,
Blum
RH
,
Kaufman
DS
.
Concise review: human pluripotent stem cells to produce cell-based cancer immunotherapy
.
Stem Cells
.
2018
;
36
(
2
):
134
-
145
.
25.
Morvan
MG
,
Lanier
LL
.
NK cells and cancer: you can teach innate cells new tricks
.
Nat Rev Cancer
.
2016
;
16
(
1
):
7
-
19
.
26.
Nimmerjahn
F
,
Ravetch
JV
.
Fcgamma receptors: old friends and new family members
.
Immunity
.
2006
;
24
(
1
):
19
-
28
.
27.
Wu
J
,
Edberg
JC
,
Redecha
PB
, et al
.
A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease
.
J Clin Invest
.
1997
;
100
(
5
):
1059
-
1070
.
28.
Koene
HR
,
Kleijer
M
,
Algra
J
,
Roos
D
,
von dem Borne
AE
,
de Haas
M
.
Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype
.
Blood
.
1997
;
90
(
3
):
1109
-
1114
.
29.
Casneuf
T
,
Xu
XS
,
Adams
HC
III
, et al
.
Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma
.
Blood Adv
.
2017
;
1
(
23
):
2105
-
2114
.
30.
Bibeau
F
,
Lopez-Crapez
E
,
Di Fiore
F
, et al
.
Impact of FcgammaRIIa-FcgammaRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan
.
J Clin Oncol
.
2009
;
27
(
7
):
1122
-
1129
.
31.
Cartron
G
,
Dacheux
L
,
Salles
G
, et al
.
Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene
.
Blood
.
2002
;
99
(
3
):
754
-
758
.
32.
Musolino
A
,
Naldi
N
,
Bortesi
B
, et al
.
Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer
.
J Clin Oncol
.
2008
;
26
(
11
):
1789
-
1796
.
33.
Jing
Y
,
Ni
Z
,
Wu
J
, et al
.
Identification of an ADAM17 cleavage region in human CD16 (FcγRIII) and the engineering of a non-cleavable version of the receptor in NK cells
.
PLoS One
.
2015
;
10
(
3
):
e0121788
.
34.
Wang
Y
,
Wu
J
,
Newton
R
,
Bahaie
NS
,
Long
C
,
Walcheck
B
.
ADAM17 cleaves CD16b (FcγRIIIb) in human neutrophils
.
Biochim Biophys Acta
.
2013
;
1833
(
3
):
680
-
685
.
35.
Wu
J
,
Mishra
HK
,
Walcheck
B
.
Role of ADAM17 as a regulatory checkpoint of CD16A in NK cells and as a potential target for cancer immunotherapy
.
J Leukoc Biol
.
2019
;
105
(
6
):
1297
-
1303
.
36.
Romee
R
,
Foley
B
,
Lenvik
T
, et al
.
NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17)
.
Blood
.
2013
;
121
(
18
):
3599
-
3608
.
37.
Hermanson
DL
,
Ni
Z
,
Kaufman
DS
. Human pluripotent stem cells as a renewable source of natural killer cells. In:
Cheng
T
, ed.
Hematopoietic Differentiation of Human Pluripotent Stem Cells
,
Dordrecht, The Netherlands
:
Springer Netherlands
;
2015
:
69
-
79
.
38.
Valamehr
B
,
Robinson
M
,
Abujarour
R
, et al
.
Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells
.
Stem Cell Reports
.
2014
;
2
(
3
):
366
-
381
.
39.
Zhu
H
,
Kaufman
DS
.
An improved method to produce clinical-scale natural killer cells from human pluripotent stem cells
.
Methods Mol Biol
.
2019
;
2048
:
107
-
119
.
40.
Wang
Y
,
Herrera
AH
,
Li
Y
,
Belani
KK
,
Walcheck
B
.
Regulation of mature ADAM17 by redox agents for L-selectin shedding
.
J Immunol
.
2009
;
182
(
4
):
2449
-
2457
.
41.
Maloney
DG
,
Grillo-López
AJ
,
White
CA
, et al
.
IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma
.
Blood
.
1997
;
90
(
6
):
2188
-
2195
.
42.
Denman
CJ
,
Senyukov
VV
,
Somanchi
SS
, et al
.
Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells
.
PLoS One
.
2012
;
7
(
1
):
e30264
.
43.
Davis
TA
,
Grillo-López
AJ
,
White
CA
, et al
.
Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment
.
J Clin Oncol
.
2000
;
18
(
17
):
3135
-
3143
.
44.
Messersmith
WA
,
Ahnen
DJ
.
Targeting EGFR in colorectal cancer
.
N Engl J Med
.
2008
;
359
(
17
):
1834
-
1836
.
45.
Hudis
CA
.
Trastuzumab--mechanism of action and use in clinical practice
.
N Engl J Med
.
2007
;
357
(
1
):
39
-
51
.
46.
Bhatnagar
N
,
Ahmad
F
,
Hong
HS
, et al
.
FcγRIII (CD16)-mediated ADCC by NK cells is regulated by monocytes and FcγRII (CD32)
.
Eur J Immunol
.
2014
;
44
(
11
):
3368
-
3379
.
47.
Lanier
LL
.
Up on the tightrope: natural killer cell activation and inhibition
.
Nat Immunol
.
2008
;
9
(
5
):
495
-
502
.
48.
Rosario
M
,
Liu
B
,
Kong
L
, et al
.
The IL-15-based ALT-803 complex enhances FcγRIIIa-triggered NK cell responses and in vivo clearance of B cell lymphomas
.
Clin Cancer Res
.
2016
;
22
(
3
):
596
-
608
.
49.
Woods
EJ
,
Thirumala
S
,
Badhe-Buchanan
SS
,
Clarke
D
,
Mathew
AJ
.
Off the shelf cellular therapeutics: factors to consider during cryopreservation and storage of human cells for clinical use
.
Cytotherapy
.
2016
;
18
(
6
):
697
-
711
.
50.
Wang
X
,
Rivière
I
.
Clinical manufacturing of CAR T cells: foundation of a promising therapy
.
Mol Ther Oncolytics
.
2016
;
3
:
16015
.
51.
Saetersmoen
ML
,
Hammer
Q
,
Valamehr
B
,
Kaufman
DS
,
Malmberg
KJ
.
Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells
.
Semin Immunopathol
.
2019
;
41
(
1
):
59
-
68
.
52.
Dahlberg
CI
,
Sarhan
D
,
Chrobok
M
,
Duru
AD
,
Alici
E
.
Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity
.
Front Immunol
.
2015
;
6
:
605
.
53.
Vitale
M
,
Cantoni
C
,
Pietra
G
,
Mingari
MC
,
Moretta
L
.
Effect of tumor cells and tumor microenvironment on NK-cell function
.
Eur J Immunol
.
2014
;
44
(
6
):
1582
-
1592
.
54.
Porter
DL
,
Hwang
WT
,
Frey
NV
, et al
.
Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia
.
Sci Transl Med
.
2015
;
7
(
303
):
303ra139
.
55.
Neelapu
SS
,
Tummala
S
,
Kebriaei
P
, et al
.
Chimeric antigen receptor T-cell therapy - assessment and management of toxicities
.
Nat Rev Clin Oncol
.
2018
;
15
(
1
):
47
-
62
.
56.
Srpan
K
,
Ambrose
A
,
Karampatzakis
A
, et al
.
Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells
.
J Cell Biol
.
2018
;
217
(
9
):
3267
-
3283
.
57.
Lai
P
,
Rabinowich
H
,
Crowley-Nowick
PA
,
Bell
MC
,
Mantovani
G
,
Whiteside
TL
.
Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma
.
Clin Cancer Res
.
1996
;
2
(
1
):
161
-
173
.
You do not currently have access to this content.