Key Points

  • Next-generation sequencing of HLA identified completely different predisposing and protective factors for iTTP in the Japanese and whites.

  • In silico analysis suggested that the shared ADAMTS13 peptide may bind HLA-DR proteins encoded by different DRB1 alleles.

Abstract

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare autoimmune disorder caused by neutralizing anti-ADAMTS13 autoantibodies. In white individuals, HLA allele DRB1*11 is a predisposing factor for iTTP, whereas DRB1*04 is a protective factor. However, the role of HLA in Asians is unclear. In this study, we analyzed 10 HLA loci using next-generation sequencing in 52 Japanese patients with iTTP, and the allele frequency in the iTTP group was compared with that in a Japanese control group. We identified the following HLA alleles as predisposing factors for iTTP in the Japanese population: DRB1*08:03 (odds ratio [OR], 3.06; corrected P [Pc] = .005), DRB3/4/5*blank (OR, 2.3; Pc = .007), DQA1*01:03 (OR, 2.25; Pc = .006), and DQB1*06:01 (OR,: 2.41; Pc = .003). The estimated haplotype consisting of these 4 alleles was significantly more frequent in the iTTP group than in the control group (30.8% vs 6.0%; Pc < .001). DRB1*15:01 and DRB5*01:01 were weak protective factors for iTTP (OR, 0.23; Pc = .076; and OR, 0.23, Pc = .034, respectively). On the other hand, DRB1*11 and DRB1*04 were not associated with iTTP in the Japanese. These findings indicated that predisposing and protective factors for iTTP differ between Japanese and white individuals. HLA-DR molecules encoded by DRB1*08:03 and DRB1*11:01 have different peptide-binding motifs, but interestingly, bound to the shared ADAMTS13 peptide in an in silico prediction model.

REFERENCES

REFERENCES
1.
Furlan
M
,
Robles
R
,
Galbusera
M
, et al
.
von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome
.
N Engl J Med
.
1998
;
339
(
22
):
1578
-
1584
.
2.
Tsai
HM
,
Lian
EC
.
Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura
.
N Engl J Med
.
1998
;
339
(
22
):
1585
-
1594
.
3.
Sadler
JE
.
Pathophysiology of thrombotic thrombocytopenic purpura
.
Blood
.
2017
;
130
(
10
):
1181
-
1188
.
4.
Oka
S
,
Furukawa
H
,
Kawasaki
A
, et al
.
Protective effect of the HLA-DRB1*13:02 allele in Japanese rheumatoid arthritis patients
.
PLoS One
.
2014
;
9
(
6
):
e99453
.
5.
Furukawa
H
,
Kawasaki
A
,
Oka
S
, et al
.
Human leukocyte antigens and systemic lupus erythematosus: a protective role for the HLA-DR6 alleles DRB1*13:02 and *14:03
.
PLoS One
.
2014
;
9
(
2
):
e87792
.
6.
Tandon
N
,
Zhang
L
,
Weetman
AP
.
HLA associations with Hashimoto’s thyroiditis
.
Clin Endocrinol (Oxf)
.
1991
;
34
(
5
):
383
-
386
.
7.
Scully
M
,
Brown
J
,
Patel
R
,
McDonald
V
,
Brown
CJ
,
Machin
S
.
Human leukocyte antigen association in idiopathic thrombotic thrombocytopenic purpura: evidence for an immunogenetic link
.
J Thromb Haemost
.
2010
;
8
(
2
):
257
-
262
.
8.
Coppo
P
,
Busson
M
,
Veyradier
A
, et al;
French Reference Centre for Thrombotic Microangiopathies
.
HLA-DRB1*11: a strong risk factor for acquired severe ADAMTS13 deficiency-related idiopathic thrombotic thrombocytopenic purpura in Caucasians
.
J Thromb Haemost
.
2010
;
8
(
4
):
856
-
859
.
9.
John
ML
,
Hitzler
W
,
Scharrer
I
.
The role of human leukocyte antigens as predisposing and/or protective factors in patients with idiopathic thrombotic thrombocytopenic purpura
.
Ann Hematol
.
2012
;
91
(
4
):
507
-
510
.
10.
Sorvillo
N
,
van Haren
SD
,
Kaijen
PH
, et al
.
Preferential HLA-DRB1*11-dependent presentation of CUB2-derived peptides by ADAMTS13-pulsed dendritic cells
.
Blood
.
2013
;
121
(
17
):
3502
-
3510
.
11.
Verbij
FC
,
Turksma
AW
,
de Heij
F
, et al
.
CD4+ T cells from patients with acquired thrombotic thrombocytopenic purpura recognize CUB2 domain-derived peptides
.
Blood
.
2016
;
127
(
12
):
1606
-
1609
.
12.
Mancini
I
,
Ricaño-Ponce
I
,
Pappalardo
E
, et al;
Italian Group of TTP Investigators
.
Immunochip analysis identifies novel susceptibility loci in the human leukocyte antigen region for acquired thrombotic thrombocytopenic purpura
.
J Thromb Haemost
.
2016
;
14
(
12
):
2356
-
2367
.
13.
Hrdinová
J
,
D’Angelo
S
,
Graça
NAG
, et al
.
Dissecting the pathophysiology of immune thrombotic thrombocytopenic purpura: interplay between genes and environmental triggers
.
Haematologica
.
2018
;
103
(
7
):
1099
-
1109
.
14.
Cozen
W
,
Li
D
,
Best
T
, et al
.
A genome-wide meta-analysis of nodular sclerosing Hodgkin lymphoma identifies risk loci at 6p21.32
.
Blood
.
2012
;
119
(
2
):
469
-
475
.
15.
Matsumoto
M
,
Fujimura
Y
,
Wada
H
, et al;
TTP group of Blood Coagulation Abnormalities Research Team, Research on Rare and Intractable Disease
.
Diagnostic and treatment guidelines for thrombotic thrombocytopenic purpura (TTP) 2017 in Japan
.
Int J Hematol
.
2017
;
106
(
1
):
3
-
15
.
16.
Scully
M
,
Cataland
S
,
Coppo
P
, et al;
International Working Group for Thrombotic Thrombocytopenic Purpura
.
Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies
.
J Thromb Haemost
.
2017
;
15
(
2
):
312
-
322
.
17.
Kato
S
,
Matsumoto
M
,
Matsuyama
T
,
Isonishi
A
,
Hiura
H
,
Fujimura
Y
.
Novel monoclonal antibody-based enzyme immunoassay for determining plasma levels of ADAMTS13 activity
.
Transfusion
.
2006
;
46
(
8
):
1444
-
1452
.
18.
Nelson
WC
,
Pyo
CW
,
Vogan
D
, et al
.
An integrated genotyping approach for HLA and other complex genetic systems
.
Hum Immunol
.
2015
;
76
(
12
):
928
-
938
.
19.
Nakajima
F
,
Nakamura
J
,
Yokota
T
.
Analysis of HLA haplotypes in Japanese, using high resolution allele typing [in Japanese]
.
MHC: Major Histocompatibility Complex
.
2001
;
8
(
1
):
1
-
32
.
20.
Yao
Y
,
Yang
H
,
Shi
L
, et al
.
HLA Class II Genes HLA-DRB1, HLA-DPB1, and HLA-DQB1 Are Associated With the Antibody Response to Inactivated Japanese Encephalitis Vaccine
.
Front Immunol
.
2019
;
10
:
428
.
21.
Li
L
,
Zhang
JW
,
Jenkins
G
, et al
.
Genetic variations associated with gemcitabine treatment outcome in pancreatic cancer
.
Pharmacogenet Genomics
.
2016
;
26
(
12
):
527
-
537
.
22.
Tadaka
S
,
Saigusa
D
,
Motoike
IN
, et al
.
jMorp: Japanese Multi Omics Reference Panel
.
Nucleic Acids Res
.
2018
;
46
(
D1
):
D551
-
D557
.
23.
Sette
A
,
Livingston
B
,
McKinney
D
, et al
.
The development of multi-epitope vaccines: epitope identification, vaccine design and clinical evaluation
.
Biologicals
.
2001
;
29
(
3-4
):
271
-
276
.
24.
Sette
A
,
Newman
M
,
Livingston
B
, et al
.
Optimizing vaccine design for cellular processing, MHC binding and TCR recognition
.
Tissue Antigens
.
2002
;
59
(
6
):
443
-
451
.
25.
Murthy
VL
,
Stern
LJ
.
The class II MHC protein HLA-DR1 in complex with an endogenous peptide: implications for the structural basis of the specificity of peptide binding
.
Structure
.
1997
;
5
(
10
):
1385
-
1396
.
26.
Jensen
KK
,
Andreatta
M
,
Marcatili
P
, et al
.
Improved methods for predicting peptide binding affinity to MHC class II molecules
.
Immunology
.
2018
;
154
(
3
):
394
-
406
.
27.
Levy
GG
,
Nichols
WC
,
Lian
EC
, et al
.
Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura
.
Nature
.
2001
;
413
(
6855
):
488
-
494
.
28.
Kanda
Y
.
Investigation of the freely available easy-to-use software “EZR” for medical statistics
.
Bone Marrow Transplant
.
2013
;
48
(
3
):
452
-
458
.
29.
Scholz
EM
,
Marcilla
M
,
Daura
X
,
Arribas-Layton
D
,
James
EA
,
Alvarez
I
.
Human Leukocyte Antigen (HLA)-DRB1*15:01 and HLA-DRB5*01:01 Present Complementary Peptide Repertoires
.
Front Immunol
.
2017
;
8
:
984
.
30.
Shi
Q
,
Pavey
ES
,
Carter
RE
.
Bonferroni-based correction factor for multiple, correlated endpoints
.
Pharm Stat
.
2012
;
11
(
4
):
300
-
309
.
31.
Thomsen
MC
,
Nielsen
M
.
Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion
.
Nucleic Acids Res
.
2012
;
40
(
Web Server issue
):
W281
-
W287
.
32.
Ikeda
N
,
Kojima
H
,
Nishikawa
M
, et al
.
Determination of HLA-A, -C, -B, -DRB1 allele and haplotype frequency in Japanese population based on family study
.
Tissue Antigens
.
2015
;
85
(
4
):
252
-
259
.
33.
Martino
S
,
Jamme
M
,
Deligny
C
, et al;
French Reference Center for Thrombotic Microangiopathies
.
Thrombotic Thrombocytopenic Purpura in Black People: Impact of Ethnicity on Survival and Genetic Risk Factors
.
PLoS One
.
2016
;
11
(
7
):
e0156679
.
34.
Amin Asnafi
A
,
Jalali
MT
,
Pezeshki
SMS
,
Jaseb
K
,
Saki
N
.
The Association Between Human Leukocyte Antigens and ITP, TTP, and HIT
.
J Pediatr Hematol Oncol
.
2019
;
41
(
2
):
81
-
86
.
35.
Sinkovits
G
,
Szilágyi
Á
,
Farkas
P
, et al
.
The role of human leukocyte antigen DRB1-DQB1 haplotypes in the susceptibility to acquired idiopathic thrombotic thrombocytopenic purpura
.
Hum Immunol
.
2017
;
78
(
2
):
80
-
87
.
36.
Burgdorf
S
,
Kautz
A
,
Böhnert
V
,
Knolle
PA
,
Kurts
C
.
Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation
.
Science
.
2007
;
316
(
5824
):
612
-
616
.
37.
Reinhardt
RL
,
Liang
HE
,
Locksley
RM
.
Cytokine-secreting follicular T cells shape the antibody repertoire
.
Nat Immunol
.
2009
;
10
(
4
):
385
-
393
.
38.
Doytchinova
IA
,
Flower
DR
.
In silico identification of supertypes for class II MHCs
.
J Immunol
.
2005
;
174
(
11
):
7085
-
7095
.
39.
Lund
O
,
Nielsen
M
,
Kesmir
C
, et al
.
Definition of supertypes for HLA molecules using clustering of specificity matrices
.
Immunogenetics
.
2004
;
55
(
12
):
797
-
810
.
This content is only available as a PDF.
You do not currently have access to this content.