Key Points

  • Intestinal GVHD in Atg16L1-deficient mice was reversed by inhibiting necroptosis.

  • An ex vivo platform incorporating organoids and T cells can recreate susceptibility to tissue injury and be applied to drug testing.

Abstract

A goal in precision medicine is to use patient-derived material to predict disease course and intervention outcomes. Here, we use mechanistic observations in a preclinical animal model to design an ex vivo platform that recreates genetic susceptibility to T-cell–mediated damage. Intestinal graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation. We found that intestinal GVHD in mice deficient in Atg16L1, an autophagy gene that is polymorphic in humans, is reversed by inhibiting necroptosis. We further show that cocultured allogeneic T cells kill Atg16L1-mutant intestinal organoids from mice, which was associated with an aberrant epithelial interferon signature. Using this information, we demonstrate that pharmacologically inhibiting necroptosis or interferon signaling protects human organoids derived from individuals harboring a common ATG16L1 variant from allogeneic T-cell attack. Our study provides a roadmap for applying findings in animal models to individualized therapy that targets affected tissues.

REFERENCES

REFERENCES
1.
Welniak
LA
,
Blazar
BR
,
Murphy
WJ
.
Immunobiology of allogeneic hematopoietic stem cell transplantation
.
Annu Rev Immunol
.
2007
;
25
(
1
):
139
-
170
.
2.
Ferrara
JL
,
Smith
CM
,
Sheets
J
,
Reddy
P
,
Serody
JS
.
Altered homeostatic regulation of innate and adaptive immunity in lower gastrointestinal tract GVHD pathogenesis
.
J Clin Invest
.
2017
;
127
(
7
):
2441
-
2451
.
3.
Stelljes
M
,
Hermann
S
,
Albring
J
, et al
.
Clinical molecular imaging in intestinal graft-versus-host disease: mapping of disease activity, prediction, and monitoring of treatment efficiency by positron emission tomography
.
Blood
.
2008
;
111
(
5
):
2909
-
2918
.
4.
Rodriguez-Otero
P
,
Porcher
R
,
Peffault de Latour
R
, et al
.
Fecal calprotectin and alpha-1 antitrypsin predict severity and response to corticosteroids in gastrointestinal graft-versus-host disease
.
Blood
.
2012
;
119
(
24
):
5909
-
5917
.
5.
Major-Monfried
H
,
Renteria
AS
,
Pawarode
A
, et al
.
MAGIC biomarkers predict long-term outcomes for steroid-resistant acute GVHD
.
Blood
.
2018
;
131
(
25
):
2846
-
2855
.
6.
Hubbard-Lucey
VM
,
Shono
Y
,
Maurer
K
, et al
.
Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells
.
Immunity
.
2014
;
41
(
4
):
579
-
591
.
7.
Matsuzawa-Ishimoto
Y
,
Shono
Y
,
Gomez
LE
, et al
.
Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium
.
J Exp Med
.
2017
;
214
(
12
):
3687
-
3705
.
8.
Khor
B
,
Gardet
A
,
Xavier
RJ
.
Genetics and pathogenesis of inflammatory bowel disease
.
Nature
.
2011
;
474
(
7351
):
307
-
317
.
9.
Shono
Y
,
van den Brink
MRM
.
Gut microbiota injury in allogeneic haematopoietic stem cell transplantation
.
Nat Rev Cancer
.
2018
;
18
(
5
):
283
-
295
.
10.
Galluzzi
L
,
Baehrecke
EH
,
Ballabio
A
, et al
.
Molecular definitions of autophagy and related processes
.
EMBO J
.
2017
;
36
(
13
):
1811
-
1836
.
11.
Matsuzawa-Ishimoto
Y
,
Hwang
S
,
Cadwell
K
.
Autophagy and Inflammation
.
Annu Rev Immunol
.
2018
;
36
(
1
):
73
-
101
.
12.
Burger
E
,
Araujo
A
,
Lopez-Yglesias
A
, et al
.
Loss of Paneth cell autophagy causes acute susceptibility to Toxoplasma gondii-mediated inflammation
.
Cell Host Microbe
.
2018
;
23
(
2
):
177
-
190.e4
.
13.
Adolph
TE
,
Tomczak
MF
,
Niederreiter
L
, et al
.
Paneth cells as a site of origin for intestinal inflammation
.
Nature
.
2013
;
503
(
7475
):
272
-
276
.
14.
Pott
J
,
Kabat
AM
,
Maloy
KJ
.
Intestinal epithelial cell autophagy is required to protect against TNF-induced apoptosis during chronic colitis in mice
.
Cell Host Microbe
.
2018
;
23
(
2
):
191
-
202.e4
.
15.
Asano
J
,
Sato
T
,
Ichinose
S
, et al
.
Intrinsic autophagy is required for the maintenance of intestinal stem cells and for irradiation-induced intestinal regeneration
.
Cell Rep
.
2017
;
20
(
5
):
1050
-
1060
.
16.
Slowicka
K
,
Serramito-Gómez
I
,
Boada-Romero
E
, et al
.
Physical and functional interaction between A20 and ATG16L1-WD40 domain in the control of intestinal homeostasis
.
Nat Commun
.
2019
;
10
(
1
):
1834
.
17.
Aden
K
,
Tran
F
,
Ito
G
, et al
.
ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING
.
J Exp Med
.
2018
;
215
(
11
):
2868
-
2886
.
18.
Xie
Y
,
Zhao
Y
,
Shi
L
, et al
.
Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer
.
J Clin Invest
.
2020
;
130
(
4
):
2111
-
2128
.
19.
Sato
T
,
Vries
RG
,
Snippert
HJ
, et al
.
Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
.
Nature
.
2009
;
459
(
7244
):
262
-
265
.
20.
Pasparakis
M
,
Vandenabeele
P
.
Necroptosis and its role in inflammation
.
Nature
.
2015
;
517
(
7534
):
311
-
320
.
21.
Goodall
ML
,
Fitzwalter
BE
,
Zahedi
S
, et al
.
The autophagy machinery controls cell death switching between apoptosis and necroptosis
.
Dev Cell
.
2016
;
37
(
4
):
337
-
349
.
22.
Tait
SW
,
Oberst
A
,
Quarato
G
, et al
.
Widespread mitochondrial depletion via mitophagy does not compromise necroptosis
.
Cell Rep
.
2013
;
5
(
4
):
878
-
885
.
23.
Lu
W
,
Sun
J
,
Yoon
JS
, et al
.
Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis
.
PLoS One
.
2016
;
11
(
1
):
e0147792
.
24.
Martin
PK
,
Marchiando
A
,
Xu
R
, et al
.
Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota
.
Nat Microbiol
.
2018
;
3
(
10
):
1131
-
1141
.
25.
Reyes-Robles
T
,
Lubkin
A
,
Alonzo
F
III
,
Lacy
DB
,
Torres
VJ
.
Exploiting dominant-negative toxins to combat Staphylococcus aureus pathogenesis
.
EMBO Rep
.
2016
;
17
(
5
):
780
.
26.
Riesner
K
,
Kalupa
M
,
Shi
Y
,
Elezkurtaj
S
,
Penack
O
.
A preclinical acute GVHD mouse model based on chemotherapy conditioning and MHC-matched transplantation
.
Bone Marrow Transplant
.
2016
;
51
(
3
):
410
-
417
.
27.
Bel
S
,
Pendse
M
,
Wang
Y
, et al
.
Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine
.
Science
.
2017
;
357
(
6355
):
1047
-
1052
.
28.
Cadwell
K
,
Liu
JY
,
Brown
SL
, et al
.
A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
.
Nature
.
2008
;
456
(
7219
):
259
-
263
.
29.
Cadwell
K
,
Patel
KK
,
Maloney
NS
, et al
.
Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine
.
Cell
.
2010
;
141
(
7
):
1135
-
1145
.
30.
Lassen
KG
,
Kuballa
P
,
Conway
KL
, et al
.
Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense
.
Proc Natl Acad Sci USA
.
2014
;
111
(
21
):
7741
-
7746
.
31.
Levine
JE
,
Huber
E
,
Hammer
ST
, et al
.
Low Paneth cell numbers at onset of gastrointestinal graft-versus-host disease identify patients at high risk for nonrelapse mortality
.
Blood
.
2013
;
122
(
8
):
1505
-
1509
.
32.
Tschurtschenthaler
M
,
Adolph
TE
,
Ashcroft
JW
, et al
.
Defective ATG16L1-mediated removal of IRE1α drives Crohn’s disease-like ileitis
.
J Exp Med
.
2017
;
214
(
2
):
401
-
422
.
33.
Diamanti
MA
,
Gupta
J
,
Bennecke
M
, et al
.
IKKα controls ATG16L1 degradation to prevent ER stress during inflammation
.
J Exp Med
.
2017
;
214
(
2
):
423
-
437
.
34.
Simmons
AN
,
Kajino-Sakamoto
R
,
Ninomiya-Tsuji
J
.
TAK1 regulates Paneth cell integrity partly through blocking necroptosis
.
Cell Death Dis
.
2016
;
7
(
4
):
e2196
.
35.
Gold
R
,
Schmied
M
,
Giegerich
G
, et al
.
Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques
.
Lab Invest
.
1994
;
71
(
2
):
219
-
225
.
36.
Grasl-Kraupp
B
,
Ruttkay-Nedecky
B
,
Koudelka
H
,
Bukowska
K
,
Bursch
W
,
Schulte-Hermann
R
.
In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note
.
Hepatology
.
1995
;
21
(
5
):
1465
-
1468
.
37.
Imagawa
Y
,
Saitoh
T
,
Tsujimoto
Y
.
Vital staining for cell death identifies Atg9a-dependent necrosis in developmental bone formation in mouse
.
Nat Commun
.
2016
;
7
(
1
):
13391
.
38.
Rogoz
A
,
Reis
BS
,
Karssemeijer
RA
,
Mucida
D
.
A 3-D enteroid-based model to study T-cell and epithelial cell interaction
.
J Immunol Methods
.
2015
;
421
:
89
-
95
.
39.
Nozaki
K
,
Mochizuki
W
,
Matsumoto
Y
, et al
.
Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes
.
J Gastroenterol
.
2016
;
51
(
3
):
206
-
213
.
40.
Grabinger
T
,
Luks
L
,
Kostadinova
F
, et al
.
Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy
.
Cell Death Dis
.
2014
;
5
(
5
):
e1228
.
41.
Ni
X
,
Song
Q
,
Cassady
K
, et al
.
PD-L1 interacts with CD80 to regulate graft-versus-leukemia activity of donor CD8+ T cells
.
J Clin Invest
.
2017
;
127
(
5
):
1960
-
1977
.
42.
Loi
M
,
Müller
A
,
Steinbach
K
, et al
.
Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8(+) T cell responses
.
Cell Rep
.
2016
;
15
(
5
):
1076
-
1087
.
43.
Farin
HF
,
Karthaus
WR
,
Kujala
P
, et al
.
Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-γ
.
J Exp Med
.
2014
;
211
(
7
):
1393
-
1405
.
44.
Eriguchi
Y
,
Nakamura
K
,
Yokoi
Y
, et al
.
Essential role of IFN-γ in T cell-associated intestinal inflammation
.
JCI Insight
.
2018
;
3
(
18
):
121886
.
45.
Robinson
N
,
McComb
S
,
Mulligan
R
,
Dudani
R
,
Krishnan
L
,
Sad
S
.
Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium
.
Nat Immunol
.
2012
;
13
(
10
):
954
-
962
.
46.
Lin
J
,
Kumari
S
,
Kim
C
, et al
.
RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation
.
Nature
.
2016
;
540
(
7631
):
124
-
128
.
47.
Newton
K
,
Wickliffe
KE
,
Maltzman
A
, et al
.
RIPK1 inhibits ZBP1-driven necroptosis during development
.
Nature
.
2016
;
540
(
7631
):
129
-
133
.
48.
Kuriakose
T
,
Man
SM
,
Malireddi
RK
, et al
.
ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways
.
Sci Immunol
.
2016
;
1
(
2
):
aag2045
.
49.
Lim
J
,
Park
H
,
Heisler
J
, et al
.
Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins
.
eLife
.
2019
;
8
:
e44452
.
50.
Hos
NJ
,
Ganesan
R
,
Gutiérrez
S
, et al
.
Type I interferon enhances necroptosis of Salmonella typhimurium-infected macrophages by impairing antioxidative stress responses
.
J Cell Biol
.
2017
;
216
(
12
):
4107
-
4121
.
51.
Legarda
D
,
Justus
SJ
,
Ang
RL
, et al
.
CYLD proteolysis protects macrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type I IFN
.
Cell Rep
.
2016
;
15
(
11
):
2449
-
2461
.
52.
Sarhan
J
,
Liu
BC
,
Muendlein
HI
, et al
.
Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis
.
Cell Death Differ
.
2019
;
26
(
2
):
332
-
347
.
53.
Upton
JW
,
Kaiser
WJ
,
Mocarski
ES
.
DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA
.
Cell Host Microbe
.
2012
;
11
(
3
):
290
-
297
.
54.
Thapa
RJ
,
Ingram
JP
,
Ragan
KB
, et al
.
DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death
.
Cell Host Microbe
.
2016
;
20
(
5
):
674
-
681
.
55.
Robb
RJ
,
Kreijveld
E
,
Kuns
RD
, et al
.
Type I-IFNs control GVHD and GVL responses after transplantation
.
Blood
.
2011
;
118
(
12
):
3399
-
3409
.
56.
Fischer
JC
,
Bscheider
M
,
Eisenkolb
G
, et al
.
RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury
.
Sci Transl Med
.
2017
;
9
(
386
):
eaag2513
.
57.
Schroeder
MA
,
Choi
J
,
Staser
K
,
DiPersio
JF
.
The role of Janus kinase signaling in graft-versus-host disease and graft versus leukemia
.
Biol Blood Marrow Transplant
.
2018
;
24
(
6
):
1125
-
1134
.
58.
Spoerl
S
,
Mathew
NR
,
Bscheider
M
, et al
.
Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease
.
Blood
.
2014
;
123
(
24
):
3832
-
3842
.
59.
Thapa
RJ
,
Nogusa
S
,
Chen
P
, et al
.
Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases
.
Proc Natl Acad Sci USA
.
2013
;
110
(
33
):
E3109
-
E3118
.
60.
Konnikova
L
,
Boschetti
G
,
Rahman
A
, et al
.
High-dimensional immune phenotyping and transcriptional analyses reveal robust recovery of viable human immune and epithelial cells from frozen gastrointestinal tissue
.
Mucosal Immunol
.
2018
;
11
(
6
):
1684
-
1693
.
61.
Takahashi
N
,
Vereecke
L
,
Bertrand
MJ
, et al
.
RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis
.
Nature
.
2014
;
513
(
7516
):
95
-
99
.
62.
Cuchet-Lourenço
D
,
Eletto
D
,
Wu
C
, et al
.
Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation
.
Science
.
2018
;
361
(
6404
):
810
-
813
.
63.
Dannappel
M
,
Vlantis
K
,
Kumari
S
, et al
.
RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis
.
Nature
.
2014
;
513
(
7516
):
90
-
94
.
64.
Günther
C
,
Neumann
H
,
Neurath
MF
,
Becker
C
.
Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium
.
Gut
.
2013
;
62
(
7
):
1062
-
1071
.
65.
Stolzer
I
,
Kaden-Volynets
V
,
Ruder
B
, et al
.
Environmental microbial factors determine the pattern of inflammatory lesions in a murine model of Crohn’s disease-like inflammation
.
Inflamm Bowel Dis
.
2020
;
26
(
1
):
66
-
79
.
66.
Uberti
JP
,
Ayash
L
,
Ratanatharathorn
V
, et al
.
Pilot trial on the use of etanercept and methylprednisolone as primary treatment for acute graft-versus-host disease
.
Biol Blood Marrow Transplant
.
2005
;
11
(
9
):
680
-
687
.
67.
Choi
SW
,
Stiff
P
,
Cooke
K
, et al
.
TNF-inhibition with etanercept for graft-versus-host disease prevention in high-risk HCT: lower TNFR1 levels correlate with better outcomes
.
Biol Blood Marrow Transplant
.
2012
;
18
(
10
):
1525
-
1532
.
68.
Busca
A
,
Locatelli
F
,
Marmont
F
,
Ceretto
C
,
Falda
M
.
Recombinant human soluble tumor necrosis factor receptor fusion protein as treatment for steroid refractory graft-versus-host disease following allogeneic hematopoietic stem cell transplantation
.
Am J Hematol
.
2007
;
82
(
1
):
45
-
52
.
69.
Couriel
DR
,
Saliba
R
,
de Lima
M
, et al
.
A phase III study of infliximab and corticosteroids for the initial treatment of acute graft-versus-host disease
.
Biol Blood Marrow Transplant
.
2009
;
15
(
12
):
1555
-
1562
.
70.
Samie
M
,
Lim
J
,
Verschueren
E
, et al
.
Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling
.
Nat Immunol
.
2018
;
19
(
3
):
246
-
254
.
71.
Günther
C
,
Ruder
B
,
Stolzer
I
, et al
.
Interferon lambda promotes Paneth cell death via STAT1 signaling in mice and is increased in inflamed ileal tissues of patients with Crohn’s disease
.
Gastroenterology
.
2019
;
157
(
5
):
1310
-
1322.e13
.
This content is only available as a PDF.
You do not currently have access to this content.