Key Points

  • In normal Mks, calreticulin regulates the activation of SOCE by interacting with ERp57 and STIM1.

  • In CALR-mutated MPNs, defective interaction between mutant calreticulin and SOCE proteins promotes Mk proliferation.

Abstract

Approximately one-fourth of patients with essential thrombocythemia or primary myelofibrosis carry a somatic mutation of the calreticulin gene (CALR), the gene encoding for calreticulin. A 52-bp deletion (type I mutation) and a 5-bp insertion (type II mutation) are the most frequent genetic lesions. The mechanism(s) by which a CALR mutation leads to a myeloproliferative phenotype has been clarified only in part. We studied the interaction between calreticulin and store-operated calcium (Ca2+) entry (SOCE) machinery in megakaryocytes (Mks) from healthy individuals and from patients with CALR-mutated myeloproliferative neoplasms (MPNs). In Mks from healthy subjects, binding of recombinant human thrombopoietin to c-Mpl induced the activation of signal transducer and activator of transcription 5, AKT, and extracellular signal-regulated kinase 1/2, determining inositol triphosphate–dependent Ca2+ release from the endoplasmic reticulum (ER). This resulted in the dissociation of the ER protein 57 (ERp57)-mediated complex between calreticulin and stromal interaction molecule 1 (STIM1), a protein of the SOCE machinery that leads to Ca2+ mobilization. In Mks from patients with CALR-mutated MPNs, defective interactions between mutant calreticulin, ERp57, and STIM1 activated SOCE and generated spontaneous cytosolic Ca2+ flows. In turn, this resulted in abnormal Mk proliferation that was reverted using a specific SOCE inhibitor. In summary, the abnormal SOCE regulation of Ca2+ flows in Mks contributes to the pathophysiology of CALR-mutated MPNs. In perspective, SOCE may represent a new therapeutic target to counteract Mk proliferation and its clinical consequences in MPNs.

REFERENCES

REFERENCES
1.
Rumi
E
,
Cazzola
M
.
Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms
.
Blood
.
2017
;
129
(
6
):
680
-
692
.
2.
Tefferi
A
.
Myeloproliferative neoplasms: a decade of discoveries and treatment advances
.
Am J Hematol
.
2016
;
91
(
1
):
50
-
58
.
3.
Malara
A
,
Abbonante
V
,
Di Buduo
CA
,
Tozzi
L
,
Currao
M
,
Balduini
A
.
The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control
.
Cell Mol Life Sci
.
2015
;
72
(
8
):
1517
-
1536
.
4.
Klampfl
T
,
Gisslinger
H
,
Harutyunyan
AS
, et al
.
Somatic mutations of calreticulin in myeloproliferative neoplasms
.
N Engl J Med
.
2013
;
369
(
25
):
2379
-
2390
.
5.
Pietra
D
,
Rumi
E
,
Ferretti
VV
, et al
.
Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms
.
Leukemia
.
2016
;
30
(
2
):
431
-
438
.
6.
Chachoua
I
,
Pecquet
C
,
El-Khoury
M
, et al
.
Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants
.
Blood
.
2016
;
127
(
10
):
1325
-
1335
.
7.
Marty
C
,
Pecquet
C
,
Nivarthi
H
, et al
.
Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis
.
Blood
.
2016
;
127
(
10
):
1317
-
1324
.
8.
Elf
S
,
Abdelfattah
NS
,
Chen
E
, et al
.
Mutant calreticulin requires both its mutant c-terminus and the thrombopoietin receptor for oncogenic transformation
.
Cancer Discov
.
2016
;
6
(
4
):
368
-
381
.
9.
Masubuchi
N
,
Araki
M
,
Yang
Y
, et al
.
Mutant calreticulin interacts with MPL in the secretion pathway for activation on the cell surface [published online ahead of print 28 August 2019]
.
Leukemia
.
doi:10.1038/s41375-019-0564-z
.
10.
Di Buduo
CA
,
Balduini
A
,
Moccia
F
.
Pathophysiological significance of store-operated calcium entry in megakaryocyte function: opening new paths for understanding the role of calcium in thrombopoiesis
.
Int J Mol Sci
.
2016
;
17
(
12
):
11.
Bastianutto
C
,
Clementi
E
,
Codazzi
F
, et al
.
Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function
.
J Cell Biol
.
1995
;
130
(
4
):
847
-
855
.
12.
Fasolato
C
,
Pizzo
P
,
Pozzan
T
.
Delayed activation of the store-operated calcium current induced by calreticulin overexpression in RBL-1 cells
.
Mol Biol Cell
.
1998
;
9
(
6
):
1513
-
1522
.
13.
Xu
W
,
Longo
FJ
,
Wintermantel
MR
,
Jiang
X
,
Clark
RA
,
DeLisle
S
.
Calreticulin modulates capacitative Ca2+ influx by controlling the extent of inositol 1,4,5-trisphosphate-induced Ca2+ store depletion
.
J Biol Chem
.
2000
;
275
(
47
):
36676
-
36682
.
14.
Holbrook
LM
,
Sasikumar
P
,
Stanley
RG
,
Simmonds
AD
,
Bicknell
AB
,
Gibbins
JM
.
The platelet-surface thiol isomerase enzyme ERp57 modulates platelet function
.
J Thromb Haemost
.
2012
;
10
(
2
):
278
-
288
.
15.
Crescente
M
,
Pluthero
FG
,
Li
L
, et al
.
Intracellular trafficking, localization, and mobilization of platelet-borne thiol isomerases
.
Arterioscler Thromb Vasc Biol
.
2016
;
36
(
6
):
1164
-
1173
.
16.
Prins
D
,
Groenendyk
J
,
Touret
N
,
Michalak
M
.
Modulation of STIM1 and capacitative Ca2+ entry by the endoplasmic reticulum luminal oxidoreductase ERp57
.
EMBO Rep
.
2011
;
12
(
11
):
1182
-
1188
.
17.
Elf
S
,
Abdelfattah
NS
,
Baral
AJ
, et al
.
Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN
.
Blood
.
2018
;
131
(
7
):
782
-
786
.
18.
Pronier
E
,
Cifani
P
,
Merlinsky
TR
, et al
.
Targeting the CALR interactome in myeloproliferative neoplasms
.
JCI Insight
.
2018
;
3
(
22
):
19.
Di Buduo
CA
,
Abbonante
V
,
Tozzi
L
,
Kaplan
DL
,
Balduini
A
.
Three-dimensional tissue models for studying ex vivo megakaryocytopoiesis and platelet production
.
Methods Mol Biol
.
2018
;
1812
:
177
-
193
.
20.
Di Buduo
CA
,
Moccia
F
,
Battiston
M
, et al
.
The importance of calcium in the regulation of megakaryocyte function
.
Haematologica
.
2014
;
99
(
4
):
769
-
778
.
21.
Abbonante
V
,
Di Buduo
CA
,
Gruppi
C
, et al
.
A new path to platelet production through matrix sensing
.
Haematologica
.
2017
;
102
(
7
):
1150
-
1160
.
22.
An
B
,
Abbonante
V
,
Xu
H
, et al
.
Recombinant collagen engineered to bind to discoidin domain receptor functions as a receptor inhibitor
.
J Biol Chem
.
2016
;
291
(
9
):
4343
-
4355
.
23.
Abbonante
V
,
Gruppi
C
,
Catarsi
P
, et al
.
Altered fibronectin expression and deposition by myeloproliferative neoplasm-derived mesenchymal stromal cells
.
Br J Haematol
.
2016
;
172
(
1
):
140
-
144
.
24.
Abbonante
V
,
Di Buduo
CA
,
Gruppi
C
, et al
.
Thrombopoietin/TGF-β1 loop regulates megakaryocyte extracellular matrix component synthesis
.
Stem Cells
.
2016
;
34
(
4
):
1123
-
1133
.
25.
Di Buduo
CA
,
Currao
M
,
Pecci
A
,
Kaplan
DL
,
Balduini
CL
,
Balduini
A
.
Revealing eltrombopag’s promotion of human megakaryopoiesis through AKT/ERK-dependent pathway activation
.
Haematologica
.
2016
;
101
(
12
):
1479
-
1488
.
26.
Ng
LC
,
McCormack
MD
,
Airey
JA
, et al
.
TRPC1 and STIM1 mediate capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells
.
J Physiol
.
2009
;
587
(
pt 11
):
2429
-
2442
.
27.
Berra-Romani
R
,
Mazzocco-Spezzia
A
,
Pulina
MV
,
Golovina
VA
.
Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture
.
Am J Physiol Cell Physiol
.
2008
;
295
(
3
):
C779
-
C790
.
28.
Yu
M
,
Cantor
AB
.
Megakaryopoiesis and thrombopoiesis: an update on cytokines and lineage surface markers
.
Methods Mol Biol
.
2012
;
788
:
291
-
303
.
29.
Mazharian
A
,
Watson
SP
,
Séverin
S
.
Critical role for ERK1/2 in bone marrow and fetal liver-derived primary megakaryocyte differentiation, motility, and proplatelet formation
.
Exp Hematol
.
2009
;
37
(
10
):
1238
-
1249.e5
.
30.
Racke
FK
,
Lewandowska
K
,
Goueli
S
,
Goldfarb
AN
.
Sustained activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells
.
J Biol Chem
.
1997
;
272
(
37
):
23366
-
23370
.
31.
Rouyez
MC
,
Boucheron
C
,
Gisselbrecht
S
,
Dusanter-Fourt
I
,
Porteu
F
.
Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway
.
Mol Cell Biol
.
1997
;
17
(
9
):
4991
-
5000
.
32.
Whalen
AM
,
Galasinski
SC
,
Shapiro
PS
,
Nahreini
TS
,
Ahn
NG
.
Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase
.
Mol Cell Biol
.
1997
;
17
(
4
):
1947
-
1958
.
33.
Fichelson
S
,
Freyssinier
JM
,
Picard
F
, et al
.
Megakaryocyte growth and development factor-induced proliferation and differentiation are regulated by the mitogen-activated protein kinase pathway in primitive cord blood hematopoietic progenitors
.
Blood
.
1999
;
94
(
5
):
1601
-
1613
.
34.
Pinto
MC
,
Kihara
AH
,
Goulart
VA
, et al
.
Calcium signaling and cell proliferation
.
Cell Signal
.
2015
;
27
(
11
):
2139
-
2149
.
35.
Komatsu
N
,
Kunitama
M
,
Yamada
M
, et al
.
Establishment and characterization of the thrombopoietin-dependent megakaryocytic cell line, UT-7/TPO
.
Blood
.
1996
;
87
(
11
):
4552
-
4560
.
36.
Kunitama
M
,
Shimizu
R
,
Yamada
M
, et al
.
Protein kinase C and c-myc gene activation pathways in thrombopoietin signal transduction
.
Biochem Biophys Res Commun
.
1997
;
231
(
2
):
290
-
294
.
37.
Tong
Q
,
Chu
X
,
Cheung
JY
, et al
.
Erythropoietin-modulated calcium influx through TRPC2 is mediated by phospholipase Cgamma and IP3R
.
Am J Physiol Cell Physiol
.
2004
;
287
(
6
):
C1667
-
C1678
.
38.
Bisaillon
JM
,
Motiani
RK
,
Gonzalez-Cobos
JC
, et al
.
Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration
.
Am J Physiol Cell Physiol
.
2010
;
298
(
5
):
C993
-
C1005
.
39.
Orellana
DI
,
Quintanilla
RA
,
Gonzalez-Billault
C
,
Maccioni
RB
.
Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons
.
Neurotox Res
.
2005
;
8
(
3-4
):
295
-
304
.
40.
Zuccolo
E
,
Di Buduo
C
,
Lodola
F
, et al
.
Stromal cell-derived factor-1α promotes endothelial colony-forming cell migration through the Ca2+-dependent activation of the extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/AKT pathways
.
Stem Cells Dev
.
2018
;
27
(
1
):
23
-
34
.
41.
Malara
A
,
Fresia
C
,
Di Buduo
CA
, et al
.
The plant hormone abscisic acid is a prosurvival factor in human and murine megakaryocytes
.
J Biol Chem
.
2017
;
292
(
8
):
3239
-
3251
.
42.
Kamal
T
,
Green
TN
,
Morel-Kopp
MC
, et al
.
Inhibition of glutamate regulated calcium entry into leukemic megakaryoblasts reduces cell proliferation and supports differentiation
.
Cell Signal
.
2015
;
27
(
9
):
1860
-
1872
.
43.
Ramanathan
G
,
Mannhalter
C
.
Increased expression of transient receptor potential canonical 6 (TRPC6) in differentiating human megakaryocytes
.
Cell Biol Int
.
2016
;
40
(
2
):
223
-
231
.
44.
Leach
MR
,
Cohen-Doyle
MF
,
Thomas
DY
,
Williams
DB
.
Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin
.
J Biol Chem
.
2002
;
277
(
33
):
29686
-
29697
.
45.
Frickel
EM
,
Riek
R
,
Jelesarov
I
,
Helenius
A
,
Wuthrich
K
,
Ellgaard
L
.
TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain
.
Proc Natl Acad Sci USA
.
2002
;
99
(
4
):
1954
-
1959
.
46.
Araki
M
,
Yang
Y
,
Masubuchi
N
, et al
.
Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms
.
Blood
.
2016
;
127
(
10
):
1307
-
1316
.
47.
Araki
M
,
Yang
Y
,
Imai
M
, et al
.
Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation
.
Leukemia
.
2019
;
33
(
1
):
122
-
131
.
48.
Pierro
C
,
Sneyers
F
,
Bultynck
G
,
Roderick
HL
.
ER Ca2+ release and store-operated Ca2+ entry - partners in crime or independent actors in oncogenic transformation?
Cell Calcium
.
2019
;
82
:
102061
.
49.
Chen
YF
,
Lin
PC
,
Yeh
YM
,
Chen
LH
,
Shen
MR
.
Store-operated Ca2+ entry in tumor progression: from molecular mechanisms to clinical implications
.
Cancers (Basel)
.
2019
;
11
(
7
):
50.
Xie
J
,
Pan
H
,
Yao
J
,
Zhou
Y
,
Han
W
.
SOCE and cancer: recent progress and new perspectives
.
Int J Cancer
.
2016
;
138
(
9
):
2067
-
2077
.
51.
Debant
M
,
Burgos
M
,
Hemon
P
, et al
.
STIM1 at the plasma membrane as a new target in progressive chronic lymphocytic leukemia
.
J Immunother Cancer
.
2019
;
7
(
1
):
111
.
You do not currently have access to this content.