Key Points

  • Constitutive NF-κB and Notch signaling drives splenic marginal zone lymphoma–like B-cell lymphoma in mice.

  • Dedifferentiation and epigenetic changes in B-cell lymphoma precursors underlie a switch to myeloid leukemia.

Abstract

NF-κB and Notch signaling can be simultaneously activated in a variety of B-cell lymphomas. Patients with B-cell lymphoma occasionally develop clonally related myeloid tumors with poor prognosis. Whether concurrent activation of both pathways is sufficient to induce B-cell transformation and whether the signaling initiates B-myeloid conversion in a pathological context are largely unknown. Here, we provide genetic evidence that concurrent activation of NF-κB and Notch signaling in committed B cells is sufficient to induce B-cell lymphomatous transformation and primes common progenitor cells to convert to myeloid lineage through dedifferentiation, not transdifferentiation. Intriguingly, the converted myeloid cells can further transform, albeit at low frequency, into myeloid leukemia. Mechanistically, coactivation of NF-κB and Notch signaling endows committed B cells with the ability to self renew. Downregulation of BACH2, a lymphoma and myeloid gene suppressor, but not upregulation of CEBPα and/or downregulation of B-cell transcription factors, is an early event in both B-cell transformation and myeloid conversion. Interestingly, a DNA hypomethylating drug not only effectively eliminated the converted myeloid leukemia cells, but also restored the expression of green fluorescent protein, which had been lost in converted myeloid leukemia cells. Collectively, our results suggest that targeting NF-κB and Notch signaling will not only improve lymphoma treatment, but also prevent the lymphoma-to-myeloid tumor conversion. Importantly, DNA hypomethylating drugs might efficiently treat these converted myeloid neoplasms.

REFERENCES

REFERENCES
1.
Compagno
M
,
Lim
WK
,
Grunn
A
, et al
.
Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma
.
Nature
.
2009
;
459
(
7247
):
717
-
721
.
2.
Gu
Y
,
Masiero
M
,
Banham
AH
.
Notch signaling: its roles and therapeutic potential in hematological malignancies
.
Oncotarget
.
2016
;
7
(
20
):
29804
-
29823
.
3.
Gasparini
C
,
Celeghini
C
,
Monasta
L
,
Zauli
G
.
NF-κB pathways in hematological malignancies
.
Cell Mol Life Sci
.
2014
;
71
(
11
):
2083
-
2102
.
4.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes [published corrections appear in Nat Med. 2018;24(8):1290-1291; Nat Med. 2018;24(8):1292]
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
5.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
6.
Di Ianni
M
,
Baldoni
S
,
Del Papa
B
, et al
.
NOTCH1 is aberrantly activated in chronic lymphocytic leukemia hematopoietic stem cells
.
Front Oncol
.
2018
;
8
:
105
.
7.
Fabbri
G
,
Holmes
AB
,
Viganotti
M
, et al
.
Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia
.
Proc Natl Acad Sci USA
.
2017
;
114
(
14
):
E2911
-
E2919
.
8.
Rossi
D
,
Trifonov
V
,
Fangazio
M
, et al
.
The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development
.
J Exp Med
.
2012
;
209
(
9
):
1537
-
1551
.
9.
Spina
V
,
Martuscelli
L
,
Rossi
D
.
Molecular deregulation of signaling in lymphoid tumors
.
Eur J Haematol
.
2015
;
95
(
4
):
257
-
269
.
10.
Ghosh
S
,
Hayden
MS
.
New regulators of NF-kappaB in inflammation
.
Nat Rev Immunol
.
2008
;
8
(
11
):
837
-
848
.
11.
Karin
M
.
Nuclear factor-kappaB in cancer development and progression
.
Nature
.
2006
;
441
(
7092
):
431
-
436
.
12.
Nowell
CS
,
Radtke
F
.
Notch as a tumour suppressor
.
Nat Rev Cancer
.
2017
;
17
(
3
):
145
-
159
.
13.
Radtke
F
,
Fasnacht
N
,
Macdonald
HR
.
Notch signaling in the immune system
.
Immunity
.
2010
;
32
(
1
):
14
-
27
.
14.
Rossi
D
,
Ciardullo
C
,
Gaidano
G
.
Genetic aberrations of signaling pathways in lymphomagenesis: revelations from next generation sequencing studies
.
Semin Cancer Biol
.
2013
;
23
(
6
):
422
-
430
.
15.
Nagel
D
,
Vincendeau
M
,
Eitelhuber
AC
,
Krappmann
D
.
Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies
.
Oncogene
.
2014
;
33
(
50
):
5655
-
5665
.
16.
Thieblemont
C
,
Davi
F
,
Noguera
ME
, et al
.
Splenic marginal zone lymphoma: current knowledge and future directions
.
Oncology (Williston Park)
.
2012
;
26
(
2
):
194
-
202
.
17.
Wang
E
,
Papalas
J
,
Hutchinson
CB
, et al
.
Sequential development of histiocytic sarcoma and diffuse large b-cell lymphoma in a patient with a remote history of follicular lymphoma with genotypic evidence of a clonal relationship: a divergent (bilineal) neoplastic transformation of an indolent B-cell lymphoma in a single individual
.
Am J Surg Pathol
.
2011
;
35
(
3
):
457
-
463
.
18.
Chen
W
,
Lau
SK
,
Fong
D
, et al
.
High frequency of clonal immunoglobulin receptor gene rearrangements in sporadic histiocytic/dendritic cell sarcomas
.
Am J Surg Pathol
.
2009
;
33
(
6
):
863
-
873
.
19.
Feldman
AL
,
Arber
DA
,
Pittaluga
S
, et al
.
Clonally related follicular lymphomas and histiocytic/dendritic cell sarcomas: evidence for transdifferentiation of the follicular lymphoma clone
.
Blood
.
2008
;
111
(
12
):
5433
-
5439
.
20.
Steussy
B
,
Lekostaj
J
,
Qian
Q
, et al
.
Leukemic transdifferentiation of follicular lymphoma into an acute histiocytic leukemia in a 52-year-old caucasian woman
.
Lab Med
.
2016
;
47
(
2
):
155
-
157
.
21.
Takahashi
K
,
Yamanaka
S
.
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
.
Cell
.
2006
;
126
(
4
):
663
-
676
.
22.
Xie
H
,
Ye
M
,
Feng
R
,
Graf
T
.
Stepwise reprogramming of B cells into macrophages
.
Cell
.
2004
;
117
(
5
):
663
-
676
.
23.
van Oevelen
C
,
Collombet
S
,
Vicent
G
, et al
.
C/EBPα activates pre-existing and de novo macrophage enhancers during induced pre-B cell transdifferentiation and myelopoiesis
.
Stem Cell Reports
.
2015
;
5
(
2
):
232
-
247
.
24.
Rapino
F
,
Robles
EF
,
Richter-Larrea
JA
,
Kallin
EM
,
Martinez-Climent
JA
,
Graf
T
.
C/EBPα induces highly efficient macrophage transdifferentiation of B lymphoma and leukemia cell lines and impairs their tumorigenicity [published correction appears in Cell Rep. 2017;19(6):1281]
.
Cell Rep
.
2013
;
3
(
4
):
1153
-
1163
.
25.
Graf
T
.
Historical origins of transdifferentiation and reprogramming
.
Cell Stem Cell
.
2011
;
9
(
6
):
504
-
516
.
26.
Di Tullio
A
,
Vu Manh
TP
,
Schubert
A
,
Castellano
G
,
Månsson
R
,
Graf
T
.
CCAAT/enhancer binding protein alpha (C/EBP(alpha))-induced transdifferentiation of pre-B cells into macrophages involves no overt retrodifferentiation [published correction appears in Proc Natl Acad Sci U S A. 2012;109(27):11053]
.
Proc Natl Acad Sci USA
.
2011
;
108
(
41
):
17016
-
17021
.
27.
Di Stefano
B
,
Sardina
JL
,
van Oevelen
C
, et al
.
C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells
.
Nature
.
2014
;
506
(
7487
):
235
-
239
.
28.
Mikkola
I
,
Heavey
B
,
Horcher
M
,
Busslinger
M
.
Reversion of B cell commitment upon loss of Pax5 expression
.
Science
.
2002
;
297
(
5578
):
110
-
113
.
29.
Hanna
J
,
Markoulaki
S
,
Schorderet
P
, et al
.
Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency
.
Cell
.
2008
;
133
(
2
):
250
-
264
.
30.
Cirovic
B
,
Schönheit
J
,
Kowenz-Leutz
E
, et al
.
C/EBP-induced transdifferentiation reveals granulocyte-macrophage precursor-like plasticity of B cells
.
Stem Cell Reports
.
2017
;
8
(
2
):
346
-
359
.
31.
Rossi
JG
,
Bernasconi
AR
,
Alonso
CN
, et al
.
Lineage switch in childhood acute leukemia: an unusual event with poor outcome
.
Am J Hematol
.
2012
;
87
(
9
):
890
-
897
.
32.
Dorantes-Acosta
E
,
Pelayo
R
.
Lineage switching in acute leukemias: a consequence of stem cell plasticity?
Bone Marrow Res
.
2012
;
2012
:
406796
.
33.
Sasaki
Y
,
Calado
DP
,
Derudder
E
, et al
.
NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells
.
Proc Natl Acad Sci USA
.
2008
;
105
(
31
):
10883
-
10888
.
34.
Hampel
F
,
Ehrenberg
S
,
Hojer
C
, et al
.
CD19-independent instruction of murine marginal zone B-cell development by constitutive Notch2 signaling
.
Blood
.
2011
;
118
(
24
):
6321
-
6331
.
35.
Oh
P
,
Lobry
C
,
Gao
J
, et al
.
In vivo mapping of notch pathway activity in normal and stress hematopoiesis [published correction appears in Cell Stem Cell. 2013;13(2):256]
.
Cell Stem Cell
.
2013
;
13
(
2
):
190
-
204
.
36.
Xiu
Y
,
Xue
WY
,
Lambertz
A
,
Leidinger
M
,
Gibson-Corley
K
,
Zhao
C
.
Constitutive activation of NIK impairs the self-renewal of hematopoietic stem/progenitor cells and induces bone marrow failure
.
Stem Cells
.
2017
;
35
(
3
):
777
-
786
.
37.
Xiu
Y
,
Dong
Q
,
Li
Q
, et al
.
Stabilization of NF-κB-inducing kinase suppresses MLL-AF9-induced acute myeloid leukemia
.
Cell Reports
.
2018
;
22
(
2
):
350
-
358
.
38.
Ackermann
AM
,
Wang
Z
,
Schug
J
,
Naji
A
,
Kaestner
KH
.
Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes
.
Mol Metab
.
2016
;
5
(
3
):
233
-
244
.
39.
Bolger
AM
,
Lohse
M
,
Usadel
B
.
Trimmomatic: a flexible trimmer for Illumina sequence data
.
Bioinformatics
.
2014
;
30
(
15
):
2114
-
2120
.
40.
Langmead
B
,
Salzberg
SL
.
Fast gapped-read alignment with Bowtie 2
.
Nat Methods
.
2012
;
9
(
4
):
357
-
359
.
41.
Li
H
,
Handsaker
B
,
Wysoker
A
, et al;
1000 Genome Project Data Processing Subgroup
.
The Sequence Alignment/Map format and SAMtools
.
Bioinformatics
.
2009
;
25
(
16
):
2078
-
2079
.
42.
Ou
J
,
Liu
H
,
Yu
J
, et al
.
ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data
.
BMC Genomics
.
2018
;
19
(
1
):
169
.
43.
Zhang
Y
,
Liu
T
,
Meyer
CA
, et al
.
Model-based analysis of ChIP-Seq (MACS)
.
Genome Biol
.
2008
;
9
(
9
):
R137
.
44.
Quinlan
AR
,
Hall
IM
.
BEDTools: a flexible suite of utilities for comparing genomic features
.
Bioinformatics
.
2010
;
26
(
6
):
841
-
842
.
45.
Liao
Y
,
Smyth
GK
,
Shi
W
.
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
.
Bioinformatics
.
2014
;
30
(
7
):
923
-
930
.
46.
Wang
J
,
Zibetti
C
,
Shang
P
, et al
.
ATAC-seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration
.
Nat Commun
.
2018
;
9
(
1
):
1364
.
47.
Yu
G
,
Wang
LG
,
He
QY
.
ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization
.
Bioinformatics
.
2015
;
31
(
14
):
2382
-
2383
.
48.
Ramírez
F
,
Ryan
DP
,
Grüning
B
, et al
.
deepTools2: a next generation Web server for deep-sequencing data analysis
.
Nucleic Acids Res
.
2016
;
44
(
W1
):
W160
-
W165
.
49.
Thorvaldsdóttir
H
,
Robinson
JT
,
Mesirov
JP
.
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
.
Brief Bioinform
.
2013
;
14
(
2
):
178
-
192
.
50.
Eibel
H
,
Kraus
H
,
Sic
H
,
Kienzler
AK
,
Rizzi
M
.
B cell biology: an overview
.
Curr Allergy Asthma Rep
.
2014
;
14
(
5
):
434
.
51.
Mandel
EM
,
Grosschedl
R
.
Transcription control of early B cell differentiation
.
Curr Opin Immunol
.
2010
;
22
(
2
):
161
-
167
.
52.
Grosschedl
R
.
Establishment and maintenance of B cell identity
.
Cold Spring Harb Symp Quant Biol
.
2013
;
78
(
0
):
23
-
30
.
53.
von Wnuck Lipinski
K
,
Sattler
K
,
Peters
S
, et al
.
Hepatocyte nuclear factor 1A is a cell-intrinsic transcription factor required for B cell differentiation and development in mice
.
J Immunol
.
2016
;
196
(
4
):
1655
-
1665
.
54.
Huet
S
,
Sujobert
P
,
Salles
G
.
From genetics to the clinic: a translational perspective on follicular lymphoma
.
Nat Rev Cancer
.
2018
;
18
(
4
):
224
-
239
.
55.
Brunner
P
,
Rufle
A
,
Dirnhofer
S
, et al
.
Follicular lymphoma transformation into histiocytic sarcoma: indications for a common neoplastic progenitor
.
Leukemia
.
2014
;
28
(
9
):
1937
-
1940
.
56.
Cobaleda
C
,
Busslinger
M
.
Developmental plasticity of lymphocytes
.
Curr Opin Immunol
.
2008
;
20
(
2
):
139
-
148
.
57.
Cobaleda
C
,
Jochum
W
,
Busslinger
M
.
Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors
.
Nature
.
2007
;
449
(
7161
):
473
-
477
.
58.
Sardina
JL
,
Collombet
S
,
Tian
TV
, et al
.
Transcription factors drive Tet2-mediated enhancer demethylation to reprogram cell fate [published correction appears in Cell Stem Cell. 2018;23(6):905-906]
.
Cell Stem Cell
.
2018
;
23
(
6
):
905
-
906
.
59.
Stadhouders
R
,
Vidal
E
,
Serra
F
, et al
.
Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming
.
Nat Genet
.
2018
;
50
(
2
):
238
-
249
.
60.
Kallin
EM
,
Rodríguez-Ubreva
J
,
Christensen
J
, et al
.
Tet2 facilitates the derepression of myeloid target genes during CEBPα-induced transdifferentiation of pre-B cells
.
Mol Cell
.
2012
;
48
(
2
):
266
-
276
.
61.
Ambrosio
MR
,
De Falco
G
,
Rocca
BJ
, et al
.
Langerhans cell sarcoma following marginal zone lymphoma: expanding the knowledge on mature B cell plasticity
.
Virchows Arch
.
2015
;
467
(
4
):
471
-
480
.
62.
Clipson
A
,
Wang
M
,
de Leval
L
, et al
.
KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype
.
Leukemia
.
2015
;
29
(
5
):
1177
-
1185
.
63.
Li
XY
,
Geng
LY
,
Zhou
XX
, et al
.
Krüppel-like factor 4 contributes to the pathogenesis of mantle cell lymphoma
.
Leuk Lymphoma
.
2017
;
58
(
10
):
2460
-
2469
.
64.
Guan
H
,
Xie
L
,
Leithäuser
F
, et al
.
KLF4 is a tumor suppressor in B-cell non-Hodgkin lymphoma and in classic Hodgkin lymphoma
.
Blood
.
2010
;
116
(
9
):
1469
-
1478
.
65.
Filarsky
K
,
Garding
A
,
Becker
N
, et al
.
Krüppel-like factor 4 (KLF4) inactivation in chronic lymphocytic leukemia correlates with promoter DNA-methylation and can be reversed by inhibition of NOTCH signaling
.
Haematologica
.
2016
;
101
(
6
):
e249
-
e253
.
66.
Chen
PY
,
Yen
JH
,
Kao
RH
,
Chen
JH
.
Down-regulation of the oncogene PTTG1 via the KLF6 tumor suppressor during induction of myeloid differentiation
.
PLoS One
.
2013
;
8
(
8
):
e71282
.
67.
Béguelin
W
,
Popovic
R
,
Teater
M
, et al
.
EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation
.
Cancer Cell
.
2013
;
23
(
5
):
677
-
692
.
68.
Cai
Q
,
Medeiros
LJ
,
Xu
X
,
Young
KH
.
MYC-driven aggressive B-cell lymphomas: biology, entity, differential diagnosis and clinical management
.
Oncotarget
.
2015
;
6
(
36
):
38591
-
38616
.
69.
Ge
Z
,
Zhou
X
,
Gu
Y
, et al
.
Ikaros regulation of the BCL6/BACH2 axis and its clinical relevance in acute lymphoblastic leukemia
.
Oncotarget
.
2017
;
8
(
5
):
8022
-
8034
.
70.
Herbaux
C
,
Bertrand
E
,
Marot
G
, et al
.
BACH2 promotes indolent clinical presentation in Waldenström macroglobulinemia
.
Oncotarget
.
2016
;
8
(
34
):
57451
-
57459
.
71.
Sauvageau
M
,
Sauvageau
G
.
Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer
.
Cell Stem Cell
.
2010
;
7
(
3
):
299
-
313
.
72.
Itoh-Nakadai
A
,
Hikota
R
,
Muto
A
, et al
.
The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program
.
Nat Immunol
.
2014
;
15
(
12
):
1171
-
1180
.
73.
Itoh-Nakadai
A
,
Matsumoto
M
,
Kato
H
, et al
.
A Bach2-Cebp gene regulatory network for the commitment of multipotent hematopoietic progenitors
.
Cell Reports
.
2017
;
18
(
10
):
2401
-
2414
.
74.
Swaminathan
S
,
Huang
C
,
Geng
H
, et al
.
BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint
.
Nat Med
.
2013
;
19
(
8
):
1014
-
1022
.
75.
Liu
Z
,
Brunskill
E
,
Varnum-Finney
B
, et al
.
The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis
.
Development
.
2015
;
142
(
14
):
2452
-
2463
.
76.
Sun
SC
.
The noncanonical NF-κB pathway
.
Immunol Rev
.
2012
;
246
(
1
):
125
-
140
.
77.
Ruetz
T
,
Pfisterer
U
,
Di Stefano
B
, et al
.
Constitutively active SMAD2/3 are broad-scope potentiators of transcription-factor-mediated cellular reprogramming
.
Cell Stem Cell
.
2017
;
21
(
6
):
791
-
805.e9
.
78.
Di Stefano
B
,
Collombet
S
,
Jakobsen
JS
, et al
.
C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4
.
Nat Cell Biol
.
2016
;
18
(
4
):
371
-
381
.
79.
Papayannidis
C
,
DeAngelo
DJ
,
Stock
W
, et al
.
A phase 1 study of the novel gamma-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma
.
Blood Cancer J
.
2015
;
5
:
e350
.
80.
Volk
A
,
Li
J
,
Xin
J
, et al
.
Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML
.
J Exp Med
.
2014
;
211
(
6
):
1093
-
1108
.
81.
Guzman
ML
,
Rossi
RM
,
Neelakantan
S
, et al
.
An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells
.
Blood
.
2007
;
110
(
13
):
4427
-
4435
.
82.
Yu
P
,
Petrus
MN
,
Ju
W
, et al
.
Augmented efficacy with the combination of blockade of the Notch-1 pathway, bortezomib and romidepsin in a murine MT-1 adult T-cell leukemia model
.
Leukemia
.
2015
;
29
(
3
):
556
-
566
.
You do not currently have access to this content.