Key Points

  • H499C and H499Y mutations enhance activation of TpoR by novel L498W and canonical S505N mutations.

  • Activation of TpoR by eltrombopag and the L498W, S505N, and W515K mutants depends on W491, which might be accessible on the cell surface.

Abstract

Mutations in the MPL gene encoding the human thrombopoietin receptor (TpoR) drive sporadic and familial essential thrombocythemias (ETs). We identified 2 ET patients harboring double mutations in cis in MPL, namely, L498W-H499C and H499Y-S505N. Using biochemical and signaling assays along with partial saturation mutagenesis, we showed that L498W is an activating mutation potentiated by H499C and that H499C and H499Y enhance the activity of the canonical S505N mutation. L498W and H499C can activate a truncated TpoR mutant, which lacks the extracellular domain, indicating these mutations act on the transmembrane (TM) cytosolic domain. Using a protein complementation assay, we showed that L498W and H499C strongly drive dimerization of TpoR. Activation by tryptophan substitution is exquisitely specific for position 498. Using structure-guided mutagenesis, we identified upstream amino acid W491 as a key residue required for activation by L498W or canonical activating mutations such as S505N and W515K, as well as by eltrombopag. Structural data point to a common dimerization and activation path for TpoR via its TM domain that is shared between the small-molecule agonist eltrombopag and canonical and novel activating TpoR mutations that all depend on W491, a potentially accessible extracellular residue that could become a target for therapeutic intervention.

REFERENCES

REFERENCES
1.
Barbui
T
,
Thiele
J
,
Gisslinger
H
, et al
.
The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion
.
Blood Cancer J
.
2018
;
8
(
2
):
15
.
2.
Pikman
Y
,
Lee
BH
,
Mercher
T
, et al
.
MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia
.
PLoS Med
.
2006
;
3
(
7
):
e270
.
3.
Pardanani
AD
,
Levine
RL
,
Lasho
T
, et al
.
MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients
.
Blood
.
2006
;
108
(
10
):
3472
-
3476
.
4.
Ding
J
,
Komatsu
H
,
Wakita
A
, et al
.
Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin
.
Blood
.
2004
;
103
(
11
):
4198
-
4200
.
5.
Ding
J
,
Komatsu
H
,
Iida
S
, et al
.
The Asn505 mutation of the c-MPL gene, which causes familial essential thrombocythemia, induces autonomous homodimerization of the c-Mpl protein due to strong amino acid polarity
.
Blood
.
2009
;
114
(
15
):
3325
-
3328
.
6.
Staerk
J
,
Lacout
C
,
Sato
T
,
Smith
SO
,
Vainchenker
W
,
Constantinescu
SN
.
An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor
.
Blood
.
2006
;
107
(
5
):
1864
-
1871
.
7.
Defour
JP
,
Itaya
M
,
Gryshkova
V
, et al
.
Tryptophan at the transmembrane-cytosolic junction modulates thrombopoietin receptor dimerization and activation
.
Proc Natl Acad Sci USA
.
2013
;
110
(
7
):
2540
-
2545
.
8.
Varghese
LN
,
Defour
JP
,
Pecquet
C
,
Constantinescu
SN
.
The thrombopoietin receptor: structural basis of traffic and activation by ligand, mutations, agonists, and mutated calreticulin
.
Front Endocrinol (Lausanne)
.
2017
;
8
:
59
.
9.
Vainchenker
W
,
Plo
I
,
Marty
C
,
Varghese
LN
,
Constantinescu
SN
.
The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications
.
Expert Rev Hematol
.
2019
;
12
(
6
):
437
-
448
.
10.
Cabagnols
X
,
Favale
F
,
Pasquier
F
, et al
.
Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients
.
Blood
.
2016
;
127
(
3
):
333
-
342
.
11.
Milosevic Feenstra
JD
,
Nivarthi
H
,
Gisslinger
H
, et al
.
Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms
.
Blood
.
2016
;
127
(
3
):
325
-
332
.
12.
Leroy
E
,
Defour
JP
,
Sato
T
, et al
.
His499 regulates dimerization and prevents oncogenic activation by asparagine mutations of the human thrombopoietin receptor
.
J Biol Chem
.
2016
;
291
(
6
):
2974
-
2987
.
13.
Leroy
E
,
Balligand
T
,
Pecquet
C
, et al
.
Differential effect of inhibitory strategies of the V617 mutant of JAK2 on cytokine receptor signaling
.
J Allergy Clin Immunol
.
2019
;
144
(
1
):
224
-
235
.
14.
Dixon
AS
,
Schwinn
MK
,
Hall
MP
, et al
.
NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells
.
ACS Chem Biol
.
2016
;
11
(
2
):
400
-
408
.
15.
Kim
MJ
,
Park
SH
,
Opella
SJ
, et al
.
NMR structural studies of interactions of a small, nonpeptidyl Tpo mimic with the thrombopoietin receptor extracellular juxtamembrane and transmembrane domains
.
J Biol Chem
.
2007
;
282
(
19
):
14253
-
14261
.
16.
Staerk
J
,
Defour
JP
,
Pecquet
C
, et al
.
Orientation-specific signalling by thrombopoietin receptor dimers
.
EMBO J
.
2011
;
30
(
21
):
4398
-
4413
.
17.
Matthews
EE
,
Thévenin
D
,
Rogers
JM
, et al
.
Thrombopoietin receptor activation: transmembrane helix dimerization, rotation, and allosteric modulation
.
FASEB J
.
2011
;
25
(
7
):
2234
-
2244
.
18.
Bridgford
JL
,
Lee
S
,
Lee
C
, et al
.
Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning
.
Blood
.
2019
;
135
(
4
):
287
-
292
.
10.1182/blood.2019002561
19.
Defour
JP
,
Chachoua
I
,
Pecquet
C
,
Constantinescu
SN
.
Oncogenic activation of MPL/thrombopoietin receptor by 17 mutations at W515: implications for myeloproliferative neoplasms
.
Leukemia
.
2016
;
30
(
5
):
1214
-
1216
.
You do not currently have access to this content.