Key Points

  • IRF4 and NF-κB form a feed-forward loop in ATL cells to coordinately regulate gene expressions.

  • IRF4 and NF-κB bindings are enriched in super-enhancers and regulate critical oncogenes including MYC, CCR4, and BIRC3.

Abstract

Adult T-cell leukemia/lymphoma (ATL) is a highly aggressive hematological malignancy derived from mature CD4+ T-lymphocytes. Here, we demonstrate the transcriptional regulatory network driven by 2 oncogenic transcription factors, IRF4 and NF-κB, in ATL cells. Gene expression profiling of primary ATL samples demonstrated that the IRF4 gene was more highly expressed in ATL cells than in normal T cells. Chromatin immunoprecipitation sequencing analysis revealed that IRF4-bound regions were more frequently found in super-enhancers than in typical enhancers. NF-κB was found to co-occupy IRF4-bound regulatory elements and formed a coherent feed-forward loop to coordinately regulate genes involved in T-cell functions and development. Importantly, IRF4 and NF-κB regulated several cancer genes associated with super-enhancers in ATL cells, including MYC, CCR4, and BIRC3. Genetic inhibition of BIRC3 induced growth inhibition in ATL cells, implicating its role as a critical effector molecule downstream of the IRF4-NF-κB transcriptional network.

REFERENCES

REFERENCES
1.
Matsuoka
M
,
Jeang
KT
.
Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation
.
Nat Rev Cancer
.
2007
;
7
(
4
)
270
-
280
.
2.
Waldmann
TA
.
Daclizumab (anti-Tac, Zenapax) in the treatment of leukemia/lymphoma
.
Oncogene
.
2007
;
26
(
25
)
3699
-
3703
.
3.
Ishitsuka
K
,
Tamura
K
.
Human T-cell leukaemia virus type I and adult T-cell leukaemia-lymphoma
.
Lancet Oncol
.
2014
;
15
(
11
)
e517
-
e526
.
4.
Bangham
CR
,
Ratner
L
.
How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)?
Curr Opin Virol
.
2015
;
14
93
-
100
.
5.
Watanabe
T
.
Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells
.
Blood
.
2017
;
129
(
9
)
1071
-
1081
.
6.
Gallo
RC
.
History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2
.
Oncogene
.
2005
;
24
(
39
)
5926
-
5930
.
7.
Okamoto
T
,
Ohno
Y
,
Tsugane
S
, et al
.
Multi-step carcinogenesis model for adult T-cell leukemia
.
Jpn J Cancer Res
.
1989
;
80
(
3
)
191
-
195
.
8.
Whyte
WA
,
Orlando
DA
,
Hnisz
D
, et al
.
Master transcription factors and mediator establish super-enhancers at key cell identity genes
.
Cell
.
2013
;
153
(
2
)
307
-
319
.
9.
Sanda
T
,
Lawton
LN
,
Barrasa
MI
, et al
.
Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia
.
Cancer Cell
.
2012
;
22
(
2
)
209
-
221
.
10.
Kwiatkowski
N
,
Zhang
T
,
Rahl
PB
, et al
.
Targeting transcription regulation in cancer with a covalent CDK7 inhibitor
.
Nature
.
2014
;
511
(
7511
)
616
-
620
.
11.
Christensen
CL
,
Kwiatkowski
N
,
Abraham
BJ
, et al
.
Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor [published correction appears in Cancer Cell. 2015;27(1):149]
.
Cancer Cell
.
2014
;
26
(
6
)
909
-
922
.
12.
Gryder
BE
,
Yohe
ME
,
Chou
HC
, et al
.
PAX3-FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability
.
Cancer Discov
.
2017
;
7
(
8
)
884
-
899
.
13.
Hnisz
D
,
Abraham
BJ
,
Lee
TI
, et al
.
Super-enhancers in the control of cell identity and disease
.
Cell
.
2013
;
155
(
4
)
934
-
947
.
14.
Ben-Neriah
Y
,
Karin
M
.
Inflammation meets cancer, with NF-κB as the matchmaker
.
Nat Immunol
.
2011
;
12
(
8
)
715
-
723
.
15.
Taniguchi
K
,
Karin
M
.
NF-κB, inflammation, immunity and cancer: coming of age
.
Nat Rev Immunol
.
2018
;
18
(
5
)
309
-
324
.
16.
Hirai
H
,
Suzuki
T
,
Fujisawa
J
,
Inoue
J
,
Yoshida
M
.
Tax protein of human T-cell leukemia virus type I binds to the ankyrin motifs of inhibitory factor kappa B and induces nuclear translocation of transcription factor NF-kappa B proteins for transcriptional activation
.
Proc Natl Acad Sci USA
.
1994
;
91
(
9
)
3584
-
3588
.
17.
Good
L
,
Sun
SC
.
Persistent activation of NF-kappa B/Rel by human T-cell leukemia virus type 1 tax involves degradation of I kappa B beta
.
J Virol
.
1996
;
70
(
5
)
2730
-
2735
.
18.
Xiao
G
,
Cvijic
ME
,
Fong
A
, et al
.
Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha
.
EMBO J
.
2001
;
20
(
23
)
6805
-
6815
.
19.
Hironaka
N
,
Mochida
K
,
Mori
N
,
Maeda
M
,
Yamamoto
N
,
Yamaoka
S
.
Tax-independent constitutive IkappaB kinase activation in adult T-cell leukemia cells
.
Neoplasia
.
2004
;
6
(
3
)
266
-
278
.
20.
Sanda
T
,
Asamitsu
K
,
Ogura
H
, et al
.
Induction of cell death in adult T-cell leukemia cells by a novel IkappaB kinase inhibitor
.
Leukemia
.
2006
;
20
(
4
)
590
-
598
.
21.
Sun
SC
,
Yamaoka
S
.
Activation of NF-kappaB by HTLV-I and implications for cell transformation
.
Oncogene
.
2005
;
24
(
39
)
5952
-
5964
.
22.
Shembade
N
,
Parvatiyar
K
,
Harhaj
NS
,
Harhaj
EW
.
The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling
.
EMBO J
.
2009
;
28
(
5
)
513
-
522
.
23.
Furukawa
Y
,
Kubota
R
,
Tara
M
,
Izumo
S
,
Osame
M
.
Existence of escape mutant in HTLV-I tax during the development of adult T-cell leukemia
.
Blood
.
2001
;
97
(
4
)
987
-
993
.
24.
Koiwa
T
,
Hamano-Usami
A
,
Ishida
T
, et al
.
5′-long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo
.
J Virol
.
2002
;
76
(
18
)
9389
-
9397
.
25.
Takeda
S
,
Maeda
M
,
Morikawa
S
, et al
.
Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells
.
Int J Cancer
.
2004
;
109
(
4
)
559
-
567
.
26.
Kataoka
K
,
Nagata
Y
,
Kitanaka
A
, et al
.
Integrated molecular analysis of adult T cell leukemia/lymphoma
.
Nat Genet
.
2015
;
47
(
11
)
1304
-
1315
.
27.
Satou
Y
,
Yasunaga
J
,
Yoshida
M
,
Matsuoka
M
.
HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells [published correction appears in Proc Natl Acad Sci U S A. 2006;103(23):8906]
.
Proc Natl Acad Sci USA
.
2006
;
103
(
3
)
720
-
725
.
28.
Matsuoka
M
,
Green
PL
.
The HBZ gene, a key player in HTLV-1 pathogenesis
.
Retrovirology
.
2009
;
6
(
1
)
71
.
29.
Nakagawa
M
,
Shaffer
AL
III
,
Ceribelli
M
, et al
.
Targeting the HTLV-I-regulated BATF3/IRF4 transcriptional network in adult T cell leukemia/lymphoma
.
Cancer Cell
.
2018
;
34
(
2
)
286
-
297
.
30.
Grumont
RJ
,
Gerondakis
S
.
Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes: modulation of interferon-regulated gene expression by rel/nuclear factor kappaB
.
J Exp Med
.
2000
;
191
(
8
)
1281
-
1292
.
31.
Boddicker
RL
,
Kip
NS
,
Xing
X
, et al
.
The oncogenic transcription factor IRF4 is regulated by a novel CD30/NF-κB positive feedback loop in peripheral T-cell lymphoma
.
Blood
.
2015
;
125
(
20
)
3118
-
3127
.
32.
Wong
RWJ
,
Ngoc
PCT
,
Leong
WZ
, et al
.
Enhancer profiling identifies critical cancer genes and characterizes cell identity in adult T-cell leukemia
.
Blood
.
2017
;
130
(
21
)
2326
-
2338
.
33.
Vahedi
G
,
Kanno
Y
,
Furumoto
Y
, et al
.
Super-enhancers delineate disease-associated regulatory nodes in T cells
.
Nature
.
2015
;
520
(
7548
)
558
-
562
.
34.
Bernstein
BE
,
Stamatoyannopoulos
JA
,
Costello
JF
, et al
.
The NIH Roadmap Epigenomics Mapping Consortium
.
Nat Biotechnol
.
2010
;
28
(
10
)
1045
-
1048
.
35.
Li
P
,
Spolski
R
,
Liao
W
, et al
.
BATF-JUN is critical for IRF4-mediated transcription in T cells
.
Nature
.
2012
;
490
(
7421
)
543
-
546
.
36.
Ballard
DW
,
Böhnlein
E
,
Lowenthal
JW
,
Wano
Y
,
Franza
BR
,
Greene
WC
.
HTLV-I tax induces cellular proteins that activate the kappa B element in the IL-2 receptor alpha gene
.
Science
.
1988
;
241
(
4873
)
1652
-
1655
.
37.
Shaffer
AL
,
Emre
NC
,
Lamy
L
, et al
.
IRF4 addiction in multiple myeloma
.
Nature
.
2008
;
454
(
7201
)
226
-
231
.
38.
Weilemann
A
,
Grau
M
,
Erdmann
T
, et al
.
Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma
.
Blood
.
2015
;
125
(
1
)
124
-
132
.
39.
Lovén
J
,
Hoke
HA
,
Lin
CY
, et al
.
Selective inhibition of tumor oncogenes by disruption of super-enhancers
.
Cell
.
2013
;
153
(
2
)
320
-
334
.
40.
Chipumuro
E
,
Marco
E
,
Christensen
CL
, et al
.
CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer
.
Cell
.
2014
;
159
(
5
)
1126
-
1139
.
41.
Ishida
T
,
Utsunomiya
A
,
Iida
S
, et al
.
Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome
.
Clin Cancer Res
.
2003
;
9
(
10 Pt 1
)
3625
-
3634
.
42.
Dai
Z
,
Zhu
WG
,
Morrison
CD
, et al
.
A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes
.
Hum Mol Genet
.
2003
;
12
(
7
)
791
-
801
.
43.
Huang
B
,
Belharazem
D
,
Li
L
, et al
.
Anti-apoptotic signature in thymic squamous cell carcinomas - functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c
.
Front Oncol
.
2013
;
3
316
.
44.
Gressot
LV
,
Doucette
T
,
Yang
Y
, et al
.
Analysis of the inhibitors of apoptosis identifies BIRC3 as a facilitator of malignant progression in glioma
.
Oncotarget
.
2017
;
8
(
8
)
12695
-
12704
.
45.
Mittrücker
HW
,
Matsuyama
T
,
Grossman
A
, et al
.
Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function
.
Science
.
1997
;
275
(
5299
)
540
-
543
.
46.
Bollig
N
,
Brüstle
A
,
Kellner
K
, et al
.
Transcription factor IRF4 determines germinal center formation through follicular T-helper cell differentiation
.
Proc Natl Acad Sci USA
.
2012
;
109
(
22
)
8664
-
8669
.
47.
Huber
M
,
Lohoff
M
.
IRF4 at the crossroads of effector T-cell fate decision
.
Eur J Immunol
.
2014
;
44
(
7
)
1886
-
1895
.
48.
Shaffer
AL
,
Emre
NC
,
Romesser
PB
,
Staudt
LM
.
IRF4: Immunity. Malignancy! Therapy?
Clin Cancer Res
.
2009
;
15
(
9
)
2954
-
2961
.
49.
Iida
S
,
Rao
PH
,
Butler
M
, et al
.
Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma
.
Nat Genet
.
1997
;
17
(
2
)
226
-
230
.
50.
Shukla
V
,
Ma
S
,
Hardy
RR
,
Joshi
SS
,
Lu
R
.
A role for IRF4 in the development of CLL
.
Blood
.
2013
;
122
(
16
)
2848
-
2855
.
51.
Feldman
AL
,
Law
M
,
Remstein
ED
, et al
.
Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas
.
Leukemia
.
2009
;
23
(
3
)
574
-
580
.
52.
Tsuboi
K
,
Iida
S
,
Inagaki
H
, et al
.
MUM1/IRF4 expression as a frequent event in mature lymphoid malignancies
.
Leukemia
.
2000
;
14
(
3
)
449
-
456
.
53.
Sciammas
R
,
Shaffer
AL
,
Schatz
JH
,
Zhao
H
,
Staudt
LM
,
Singh
H
.
Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation
.
Immunity
.
2006
;
25
(
2
)
225
-
236
.
54.
Cherian
MA
,
Olson
S
,
Sundaramoorthi
H
, et al
.
An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia
.
J Biol Chem
.
2018
;
293
(
18
)
6844
-
6858
.
55.
Mangan
S
,
Zaslaver
A
,
Alon
U
.
The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks
.
J Mol Biol
.
2003
;
334
(
2
)
197
-
204
.
56.
Kueh
HY
,
Rothenberg
EV
.
Regulatory gene network circuits underlying T cell development from multipotent progenitors
.
Wiley Interdiscip Rev Syst Biol Med
.
2012
;
4
(
1
)
79
-
102
.
57.
Davila
D
,
Connolly
NM
,
Bonner
H
, et al
.
Two-step activation of FOXO3 by AMPK generates a coherent feed-forward loop determining excitotoxic cell fate
.
Cell Death Differ
.
2012
;
19
(
10
)
1677
-
1688
.
58.
Doncic
A
,
Skotheim
JM
.
Feedforward regulation ensures stability and rapid reversibility of a cellular state
.
Mol Cell
.
2013
;
50
(
6
)
856
-
868
.
59.
Ishida
T
,
Inagaki
H
,
Utsunomiya
A
, et al
.
CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified
.
Clin Cancer Res
.
2004
;
10
(
16
)
5494
-
5500
.
60.
Nakagawa
M
,
Schmitz
R
,
Xiao
W
, et al
.
Gain-of-function CCR4 mutations in adult T cell leukemia/lymphoma
.
J Exp Med
.
2014
;
211
(
13
)
2497
-
2505
.
61.
Yamamoto
K
,
Utsunomiya
A
,
Tobinai
K
, et al
.
Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma
.
J Clin Oncol
.
2010
;
28
(
9
)
1591
-
1598
.
62.
Ishida
T
,
Joh
T
,
Uike
N
, et al
.
Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study
.
J Clin Oncol
.
2012
;
30
(
8
)
837
-
842
.
63.
Ogura
M
,
Ishida
T
,
Hatake
K
, et al
.
Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma
.
J Clin Oncol
.
2014
;
32
(
11
)
1157
-
1163
.
64.
Wang
CY
,
Mayo
MW
,
Korneluk
RG
,
Goeddel
DV
,
Baldwin
AS
Jr.
NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation
.
Science
.
1998
;
281
(
5383
)
1680
-
1683
.
65.
Bertrand
MJ
,
Milutinovic
S
,
Dickson
KM
, et al
.
cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination
.
Mol Cell
.
2008
;
30
(
6
)
689
-
700
.
You do not currently have access to this content.