Key Points

  • NT5C2 mutations are present in 16% of B-cell precursor ALL relapses and are clonal in one-third and subclonal in two-thirds of cases.

  • Subclonal NT5C2 mutations independently predict inferior outcome after relapse, although they are rapidly eradicated by relapse therapy.

Abstract

Activating mutations in cytosolic 5′-nucleotidase II (NT5C2) are considered to drive relapse formation in acute lymphoblastic leukemia (ALL) by conferring purine analog resistance. To examine the clinical effects of NT5C2 mutations in relapsed ALL, we analyzed NT5C2 in 455 relapsed B-cell precursor ALL patients treated within the ALL-REZ BFM 2002 relapse trial using sequencing and sensitive allele-specific real-time polymerase chain reaction. We detected 110 NT5C2 mutations in 75 (16.5%) of 455 B-cell precursor ALL relapses. Two-thirds of relapses harbored subclonal mutations and only one-third harbored clonal mutations. Event-free survival after relapse was inferior in patients with relapses with clonal and subclonal NT5C2 mutations compared with those without (19% and 25% vs 53%, P < .001). However, subclonal, but not clonal, NT5C2 mutations were associated with reduced event-free survival in multivariable analysis (hazard ratio, 1.89; 95% confidence interval, 1.28-2.69; P = .001) and with an increased rate of nonresponse to relapse treatment (subclonal 32%, clonal 12%, wild type 9%, P < .001). Nevertheless, 27 (82%) of 33 subclonal NT5C2 mutations became undetectable at the time of nonresponse or second relapse, and in 10 (71%) of 14 patients subclonal NT5C2 mutations were undetectable already after relapse induction treatment. These results show that subclonal NT5C2 mutations define relapses associated with high risk of treatment failure in patients and at the same time emphasize that their role in outcome is complex and goes beyond mutant NT5C2 acting as a targetable driver during relapse progression. Sensitive, prospective identification of NT5C2 mutations is warranted to improve the understanding and treatment of this aggressive ALL relapse subtype.

REFERENCES

REFERENCES
1.
Steliarova-Foucher
E
,
Colombet
M
,
Ries
LAG
, et al;
IICC-3 contributors
.
International incidence of childhood cancer, 2001-10: a population-based registry study
.
Lancet Oncol
.
2017
;
18
(
6
):
719
-
731
.
2.
Locatelli
F
,
Schrappe
M
,
Bernardo
ME
,
Rutella
S
.
How I treat relapsed childhood acute lymphoblastic leukemia
.
Blood
.
2012
;
120
(
14
):
2807
-
2816
.
3.
Nguyen
K
,
Devidas
M
,
Cheng
S-C
, et al;
Children’s Oncology Group
.
Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study
.
Leukemia
.
2008
;
22
(
12
):
2142
-
2150
.
4.
Parker
C
,
Waters
R
,
Leighton
C
, et al
.
Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial
.
Lancet
.
2010
;
376
(
9757
):
2009
-
2017
.
5.
Tallen
G
,
Ratei
R
,
Mann
G
, et al
.
Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90
.
J Clin Oncol
.
2010
;
28
(
14
):
2339
-
2347
.
6.
von Stackelberg
A
,
Völzke
E
,
Kühl
J-S
, et al;
ALL-REZ BFM Study Group
.
Outcome of children and adolescents with relapsed acute lymphoblastic leukaemia and non-response to salvage protocol therapy: a retrospective analysis of the ALL-REZ BFM Study Group
.
Eur J Cancer
.
2011
;
47
(
1
):
90
-
97
.
7.
Eckert
C
,
Henze
G
,
Seeger
K
, et al;
Use of Allogeneic Hematopoietic Stem-Cell Transplantation Based on Minimal Residual Disease Response Improves Outcomes for Children With Relapsed Acute Lymphoblastic Leukemia in the Intermediate-Risk Group
.
Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children with relapsed acute lymphoblastic leukemia in the intermediate-risk group
.
J Clin Oncol
.
2013
;
31
(
21
):
2736
-
2742
.
8.
Eckert
C
,
Hagedorn
N
,
Sramkova
L
, et al
.
Monitoring minimal residual disease in children with high-risk relapses of acute lymphoblastic leukemia: prognostic relevance of early and late assessment
.
Leukemia
.
2015
;
29
(
8
):
1648
-
1655
.
9.
Irving
JAE
,
Enshaei
A
,
Parker
CA
, et al
.
Integration of genetic and clinical risk factors improves prognostication in relapsed childhood B-cell precursor acute lymphoblastic leukemia
.
Blood
.
2016
;
128
(
7
):
911
-
922
.
10.
Hof
J
,
Krentz
S
,
van Schewick
C
, et al
.
Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia
.
J Clin Oncol
.
2011
;
29
(
23
):
3185
-
3193
.
11.
Groeneveld-Krentz
S
,
Schroeder
MP
,
Reiter
M
, et al
.
Aneuploidy in children with relapsed B-cell precursor acute lymphoblastic leukaemia: clinical importance of detecting a hypodiploid origin of relapse
.
Br J Haematol
.
2019
;
185
(
2
):
266
-
283
.
12.
Dieck
CL
,
Ferrando
AA
.
Genetics and mechanisms of NT5C2-driven chemotherapy resistance in relapsed ALL
.
Blood
.
2019
;
133
(
21
):
2263
-
2268
.
13.
Itoh
R
.
Enzymatic properties and physiological roles of cytosolic 5′-nucleotidase II
.
Curr Med Chem
.
2013
;
20
(
34
):
4260
-
4284
.
14.
Meyer
JA
,
Wang
J
,
Hogan
LE
, et al
.
Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia
.
Nat Genet
.
2013
;
45
(
3
):
290
-
294
.
15.
Tzoneva
G
,
Perez-Garcia
A
,
Carpenter
Z
, et al
.
Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL
.
Nat Med
.
2013
;
19
(
3
):
368
-
371
.
16.
Ma
X
,
Edmonson
M
,
Yergeau
D
, et al
.
Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia
.
Nat Commun
.
2015
;
6
(
1
):
6604
.
17.
Kunz
JB
,
Rausch
T
,
Bandapalli
OR
, et al
.
Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation
.
Haematologica
.
2015
;
100
(
11
):
1442
-
1450
.
18.
Richter-Pechańska
P
,
Kunz
JB
,
Hof
J
, et al
.
Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia
.
Blood Cancer J
.
2017
;
7
(
2
):
e523
.
19.
Tzoneva
G
,
Dieck
CL
,
Oshima
K
, et al
.
Clonal evolution mechanisms in NT5C2 mutant-relapsed acute lymphoblastic leukaemia
.
Nature
.
2018
;
553
(
7689
):
511
-
514
.
20.
Hnízda
A
,
Škerlová
J
,
Fábry
M
, et al
.
Oligomeric interface modulation causes misregulation of purine 5´-nucleotidase in relapsed leukemia
.
BMC Biol
.
2016
;
14
(
1
):
91
.
21.
Hnízda
A
,
Fábry
M
,
Moriyama
T
, et al
.
Relapsed acute lymphoblastic leukemia-specific mutations in NT5C2 cluster into hotspots driving intersubunit stimulation
.
Leukemia
.
2018
;
32
(
6
):
1393
-
1403
.
22.
Dieck
CL
,
Tzoneva
G
,
Forouhar
F
, et al
.
Structure and mechanisms of NT5C2 mutations driving thiopurine resistance in relapsed lymphoblastic leukemia
.
Cancer Cell
.
2018
;
34
(
1
):
136
-
147.e6
.
23.
Mazzon
C
,
Rampazzo
C
,
Scaini
MC
, et al
.
Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibitors and implications for therapy
.
Biochem Pharmacol
.
2003
;
66
(
3
):
471
-
479
.
24.
Schmiegelow
K
,
Nielsen
SN
,
Frandsen
TL
,
Nersting
J
.
Mercaptopurine/Methotrexate maintenance therapy of childhood acute lymphoblastic leukemia: clinical facts and fiction
.
J Pediatr Hematol Oncol
.
2014
;
36
(
7
):
503
-
517
.
25.
US National Library of Medicine
.
ALL-REZ BFM 2002: multi-center study for children with relapsed acute lymphoblastic leukemia
.
ClinicalTrials.gov identifier: NCT00114348. https://clinicaltrials.gov/ct2/show/NCT00114348?term=NCT00114348. Accessed 10 January 2019
.
26.
Krentz
S
,
Hof
J
,
Mendioroz
A
, et al
.
Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia
.
Leukemia
.
2013
;
27
(
2
):
295
-
304
.
27.
Oshima
K
,
Khiabanian
H
,
da Silva-Almeida
AC
, et al
.
Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia
.
Proc Natl Acad Sci USA
.
2016
;
113
(
40
):
11306
-
11311
.
28.
Rabadan
R
,
Bhanot
G
,
Marsilio
S
,
Chiorazzi
N
,
Pasqualucci
L
,
Khiabanian
H
.
On statistical modeling of sequencing noise in high depth data to assess tumor evolution
.
J Stat Phys
.
2018
;
172
(
1
):
143
-
155
.
29.
US National Library of Medicine, National Center for Biotechnoology Information
(
1988
).
Nucleotide [Internet]. Accession no. NG_042272.1, Homo sapiens, cytosolic 5′-nucleotidase II (NT5C2), RefSeqGene. https://www.ncbi.nlm.nih.gov/nuccore/NG_042272.1/. Accessed 10 January 2019
.
30.
Liu
J
,
Huang
SM
,
Sun
MY
, et al
.
An improved allele-specific PCR primer design method for SNP marker analysis and its application
.
Plant Methods
.
2012
;
8
(
1
):
34
.
31.
van der Velden
VHJ
,
Cazzaniga
G
,
Schrauder
A
, et al;
European Study Group on MRD detection in ALL (ESG-MRD-ALL)
.
Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data
.
Leukemia
.
2007
;
21
(
4
):
604
-
611
.
32.
Cerami
E
,
Gao
J
,
Dogrusoz
U
, et al
.
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
.
Cancer Discov
.
2012
;
2
(
5
):
401
-
404
.
33.
Schwab
C
,
Harrison
CJ
.
Advances in B-cell precursor acute lymphoblastic leukemia genomics
.
Hemasphere
.
2018
;
2
(
4
):
e53
.
34.
Jerchel
IS
,
Hoogkamer
AQ
,
Ariës
IM
, et al
.
RAS pathway mutations as a predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia
.
Leukemia
.
2018
;
32
(
4
):
931
-
940
.
35.
Landau
DA
,
Carter
SL
,
Stojanov
P
, et al
.
Evolution and impact of subclonal mutations in chronic lymphocytic leukemia
.
Cell
.
2013
;
152
(
4
):
714
-
726
.
36.
Worst
BC
,
van Tilburg
CM
,
Balasubramanian
GP
, et al
.
Next-generation personalised medicine for high-risk paediatric cancer patients: the INFORM pilot study
.
Eur J Cancer
.
2016
;
65
:
91
-
101
.
37.
Irving
J
,
Matheson
E
,
Minto
L
, et al
.
Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition
.
Blood
.
2014
;
124
(
23
):
3420
-
3430
.
You do not currently have access to this content.