Key Points

  • Adaptive resistance is often associated with TP53 abnormalities or kinase activation, particularly FLT3 internal tandem duplication.

  • NPM1 mutation is associated with excellent survival prospects and durable molecular remission after venetoclax-based combination therapy.

Abstract

The BCL-2 inhibitor venetoclax combined with hypomethylating agents or low-dose cytarabine represents an important new therapy for older or unfit patients with acute myeloid leukemia (AML). We analyzed 81 patients receiving these venetoclax-based combinations to identify molecular correlates of durable remission, response followed by relapse (adaptive resistance), or refractory disease (primary resistance). High response rates and durable remissions were typically associated with NPM1 or IDH2 mutations, with prolonged molecular remissions prevalent for NPM1 mutations. Primary and adaptive resistance to venetoclax-based combinations was most commonly characterized by acquisition or enrichment of clones activating signaling pathways such as FLT3 or RAS or biallelically perturbing TP53. Single-cell studies highlighted the polyclonal nature of intratumoral resistance mechanisms in some cases. Among cases that were primary refractory, we identified heterogeneous and sometimes divergent interval changes in leukemic clones within a single cycle of therapy, highlighting the dynamic and rapid occurrence of therapeutic selection in AML. In functional studies, FLT3 internal tandem duplication gain or TP53 loss conferred cross-resistance to both venetoclax and cytotoxic-based therapies. Collectively, we highlight molecular determinants of outcome with clinical relevance to patients with AML receiving venetoclax-based combination therapies.

REFERENCES

REFERENCES
1.
Juliusson
G
,
Abrahamsson
J
,
Lazarevic
V
, et al;
Swedish AML Group and the Swedish Childhood Leukemia Group
.
Prevalence and characteristics of survivors from acute myeloid leukemia in Sweden
.
Leukemia
.
2017
;
31
(
3
):
728
-
731
.
2.
Burnett
AK
,
Milligan
D
,
Prentice
AG
, et al
.
A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment
.
Cancer
.
2007
;
109
(
6
):
1114
-
1124
.
3.
Dombret
H
,
Seymour
JF
,
Butrym
A
, et al
.
International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts
.
Blood
.
2015
;
126
(
3
):
291
-
299
.
4.
DiNardo
CD
,
Pratz
K
,
Pullarkat
V
, et al
.
Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia
.
Blood
.
2019
;
133
(
1
):
7
-
17
.
5.
Wei
AH
,
Strickland
SA
Jr.
,
Hou
JZ
, et al
.
Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study
.
J Clin Oncol
.
2019
;
37
(
15
):
1277
-
1284
.
6.
McMahon
CM
,
Ferng
T
,
Canaani
J
, et al
.
Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia
.
Cancer Discov
.
2019
;
9
(
8
):
1050
-
1063
.
7.
Quek
L
,
David
MD
,
Kennedy
A
, et al
.
Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib
.
Nat Med
.
2018
;
24
(
8
):
1167
-
1177
.
8.
Chyla
B
,
Daver
N
,
Doyle
K
, et al
.
Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia
.
Am J Hematol
.
2018
;
93
(
8
):
E202
-
E205
.
9.
Grimwade
D
,
Hills
RK
,
Moorman
AV
, et al;
National Cancer Research Institute Adult Leukaemia Working Group
.
Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials
.
Blood
.
2010
;
116
(
3
):
354
-
365
.
10.
Döhner
H
,
Estey
E
,
Grimwade
D
, et al
.
Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel
.
Blood
.
2017
;
129
(
4
):
424
-
447
.
11.
Li
L
,
Bailey
E
,
Greenblatt
S
,
Huso
D
,
Small
D
.
Loss of the wild-type allele contributes to myeloid expansion and disease aggressiveness in FLT3/ITD knockin mice
.
Blood
.
2011
;
118
(
18
):
4935
-
4945
.
12.
Kharazi
S
,
Mead
AJ
,
Mansour
A
, et al
.
Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD-induced myeloproliferation
.
Blood
.
2011
;
118
(
13
):
3613
-
3621
.
13.
Loizou
E
,
Banito
A
,
Livshits
G
, et al
.
A gain-of-function p53-mutant oncogene promotes cell fate plasticity and myeloid leukemia through the pluripotency factor FOXH1
.
Cancer Discov
.
2019
;
9
(
7
):
962
-
979
.
14.
Nabinger
SC
,
Chen
S
,
Gao
R
, et al
.
Mutant p53 enhances leukemia-initiating cell self-renewal to promote leukemia development
.
Leukemia
.
2019
;
33
(
6
):
1535
-
1539
.
15.
DiNardo
CD
,
Pratz
KW
,
Letai
A
, et al
.
Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study
.
Lancet Oncol
.
2018
;
19
(
2
):
216
-
228
.
16.
Smith
CC
,
Paguirigan
A
,
Jeschke
GR
, et al
.
Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis
.
Blood
.
2017
;
130
(
1
):
48
-
58
.
17.
Heidel
F
,
Solem
FK
,
Breitenbuecher
F
, et al
.
Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain
.
Blood
.
2006
;
107
(
1
):
293
-
300
.
18.
Nechiporuk
T
,
Kurtz
SE
,
Nikolova
O
, et al
.
The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells
.
Cancer Discov
.
2019
;
9
(
7
):
910
-
925
.
19.
Chen
X
,
Glytsou
C
,
Zhou
H
, et al
.
Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment
.
Cancer Discov
.
2019
;
9
(
7
):
890
-
909
.
20.
Prata
PH
,
Bally
C
,
Prebet
T
, et al
.
NPM1 mutation is not associated with prolonged complete remission in acute myeloid leukemia patients treated with hypomethylating agents
.
Haematologica
.
2018
;
103
(
10
):
e455
-
e457
.
21.
Daver
N
,
Liu Dumlao
T
,
Ravandi
F
, et al
.
Effect of NPM1 and FLT3 mutations on the outcomes of elderly patients with acute myeloid leukemia receiving standard chemotherapy
.
Clin Lymphoma Myeloma Leuk
.
2013
;
13
(
4
):
435
-
440
.
22.
Kontro
M
,
Kumar
A
,
Majumder
MM
, et al
.
HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia
.
Leukemia
.
2017
;
31
(
2
):
301
-
309
.
You do not currently have access to this content.