Key Points

  • Microvesicles in stored RBC units activate the contact pathway, resulting in both FXIIa- and kallikrein-mediated activation of FIX.

  • These pathways are potential targets to prevent thrombotic or inflammatory complications of red cell transfusion.

Abstract

Storage lesion–induced, red cell–derived microvesicles (RBC-MVs) propagate coagulation by supporting the assembly of the prothrombinase complex. It has also been reported that RBC-MVs initiate coagulation via the intrinsic pathway. To elucidate the mechanism(s) of RBC-MV–induced coagulation activation, the ability of storage lesion–induced RBC-MVs to activate each zymogen of the intrinsic pathway was assessed in a buffer system. Simultaneously, the thrombin generation (TG) assay was used to assess their ability to initiate coagulation in plasma. RBC-MVs directly activated factor XII (FXII) or prekallikrein, but not FXI or FIX. RBC-MVs initiated TG in normal pooled plasma and in FXII- or FXI-deficient plasma, but not in FIX-deficient plasma, suggesting an alternate pathway that bypasses both FXII and FXI. Interestingly, RBC-MVs generated FIXa in a prekallikrein-dependent manner. Similarly, purified kallikrein activated FIX in buffer and initiated TG in normal pooled plasma, as well as FXII- or FXI-deficient plasma, but not FIX-deficient plasma. Dual inhibition of FXIIa by corn trypsin inhibitor and kallikrein by soybean trypsin inhibitor was necessary for abolishing RBC-MV–induced TG in normal pooled plasma, whereas kallikrein inhibition alone was sufficient to abolish TG in FXII- or FXI-deficient plasma. Heating RBC-MVs at 60°C for 15 minutes or pretreatment with trypsin abolished TG, suggesting the presence of MV-associated proteins that are essential for contact activation. In summary, RBC-MVs activate both FXII and prekallikrein, leading to FIX activation by 2 independent pathways: the classic FXIIa-FXI-FIX pathway and direct kallikrein activation of FIX. These data suggest novel mechanisms by which RBC transfusion mediates inflammatory and/or thrombotic outcomes.

REFERENCES

REFERENCES
1.
Théry
C
,
Ostrowski
M
,
Segura
E
.
Membrane vesicles as conveyors of immune responses
.
Nat Rev Immunol
.
2009
;
9
(
8
):
581
-
593
.
2.
Tesse
A
,
Martínez
MC
,
Meziani
F
, et al
.
Origin and biological significance of shed-membrane microparticles
.
Endocr Metab Immune Disord Drug Targets
.
2006
;
6
(
3
):
287
-
294
.
3.
Owens
AP
III
,
Mackman
N
.
Microparticles in hemostasis and thrombosis
.
Circ Res
.
2011
;
108
(
10
):
1284
-
1297
.
4.
D’Alessandro
A
,
Kriebardis
AG
,
Rinalducci
S
, et al
.
An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies
.
Transfusion
.
2015
;
55
(
1
):
205
-
219
.
5.
Burnouf
T
,
Chou
ML
,
Goubran
H
,
Cognasse
F
,
Garraud
O
,
Seghatchian
J
.
An overview of the role of microparticles/microvesicles in blood components: are they clinically beneficial or harmful?
Transfus Apheresis Sci
.
2015
;
53
(
2
):
137
-
145
.
6.
Almizraq
RJ
,
Holovati
JL
,
Acker
JP
.
Characteristics of extracellular vesicles in red blood concentrates change with storage time and blood manufacturing method
.
Transfus Med Hemother
.
2018
;
45
(
3
):
185
-
193
.
7.
Van Der Meijden
PEJ
,
Van Schilfgaarde
M
,
Van Oerle
R
,
Renné
T
,
ten Cate
H
,
Spronk
HMH
.
Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa
.
J Thromb Haemost
.
2012
;
10
(
7
):
1355
-
1362
.
8.
Jy
W
,
Johansen
ME
,
Bidot
C
Jr.
,
Horstman
LL
,
Ahn
YS
.
Red cell-derived microparticles (RMP) as haemostatic agent
.
Thromb Haemost
.
2013
;
110
(
4
):
751
-
760
.
9.
Khorana
AA
,
Francis
CW
,
Blumberg
N
,
Culakova
E
,
Refaai
MA
,
Lyman
GH
.
Blood transfusions, thrombosis, and mortality in hospitalized patients with cancer
.
Arch Intern Med
.
2008
;
168
(
21
):
2377
-
2381
.
10.
Goel
R
,
Patel
EU
,
Cushing
MM
, et al
.
Association of Perioperative Red Blood Cell Transfusions With Venous Thromboembolism in a North American Registry
.
JAMA Surg
.
2018
;
153
(
9
):
826
-
833
.
11.
Tchetche
D
,
Van der Boon
RM
,
Dumonteil
N
, et al
.
Adverse impact of bleeding and transfusion on the outcome post-transcatheter aortic valve implantation: insights from the Pooled-RotterdAm-Milano-Toulouse In Collaboration Plus (PRAGMATIC Plus) initiative
.
Am Heart J
.
2012
;
164
(
3
):
402
-
409
.
12.
Xenos
ES
,
Vargas
HD
,
Davenport
DL
.
Association of blood transfusion and venous thromboembolism after colorectal cancer resection
.
Thromb Res
.
2012
;
129
(
5
):
568
-
572
.
13.
Dhillon
NK
,
Smith
EJT
,
Ko
A
, et al
.
The risk factors of venous thromboembolism in massively transfused patients
.
J Surg Res
.
2018
;
222
:
115
-
121
.
14.
Meizoso
JP
,
Karcutskie
CA
IV
,
Ray
JJ
, et al
.
A simplified stratification system for venous thromboembolism risk in severely injured trauma patients
.
J Surg Res
.
2017
;
207
:
138
-
144
.
15.
Baumann Kreuziger
L
,
Edgren
G
,
Hauser
RG
, et al
Red blood transfusion does not increase risk for venous or arterial thrombosis [abstract]. Blood.
2018
;132(suppl 1). Abstract 415.
16.
Rubin
O
,
Delobel
J
,
Prudent
M
, et al
.
Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation
.
Transfusion
.
2013
;
53
(
8
):
1744
-
1754
.
17.
Hashemi Tayer
A
,
Amirizadeh
N
,
Ahmadinejad
M
, et al
.
Procoagulant activity of red blood cell-derived microvesicles during red cell storage
.
Transfus Med Hemother
.
2019
;
46
:
224
-
230
.
18.
Bouchard
BA
,
Orfeo
T
,
Keith
HN
, et al
.
Microparticles formed during storage of red blood cell units support thrombin generation
.
J Trauma Acute Care Surg
.
2018
;
84
(
4
):
598
-
605
.
19.
Gao
Y
,
Lv
L
,
Liu
S
,
Ma
G
,
Su
Y
.
Elevated levels of thrombin-generating microparticles in stored red blood cells
.
Vox Sang
.
2013
;
105
(
1
):
11
-
17
.
20.
Mayer
LD
,
Hope
MJ
,
Cullis
PR
.
Vesicles of variable sizes produced by a rapid extrusion procedure
.
Biochim Biophys Acta
.
1986
;
858
(
1
):
161
-
168
.
21.
Cawthern
KM
,
van ’t Veer
C
,
Lock
JB
,
DiLorenzo
ME
,
Branda
RF
,
Mann
KG
.
Blood coagulation in hemophilia A and hemophilia C
.
Blood
.
1998
;
91
(
12
):
4581
-
4592
.
22.
Labberton
L
,
Kenne
E
,
Long
AT
,
Nickel
KF
,
Di Gennaro
A
.
Neutralizing blood-borne polyphosphate in vivo provides safe thromboprotection
.
Nat Commun
.
2016
;
7
:
12616
.
23.
Lacroix
R
,
Judicone
C
,
Mooberry
M
,
Boucekine
M
,
Key
NS
,
Dignat-George
F
;
The ISTH SSC Workshop
.
Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop
.
J Thromb Haemost
.
2013
;
11
(
6
):
1190
-
1193
.
24.
Hemker
HC
,
Giesen
P
,
Al Dieri
R
, et al
.
Calibrated automated thrombin generation measurement in clotting plasma
.
Pathophysiol Haemost Thromb
.
2003
;
33
(
1
):
4
-
15
.
25.
Ivanov
I
,
Shakhawat
R
,
Sun
MF
, et al
.
Nucleic acids as cofactors for factor XI and prekallikrein activation: different roles for high-molecular-weight kininogen
.
Thromb Haemost
.
2017
;
117
(
4
):
671
-
681
.
26.
Røjkjaer
R
,
Schmaier
AH
.
Activation of the plasma kallikrein/kinin system on endothelial cells
.
Proc Assoc Am Physicians
.
1999
;
111
(
3
):
220
-
227
.
27.
Puy
C
,
Tucker
EI
,
Wong
ZC
, et al
.
Factor XII promotes blood coagulation independent of factor XI in the presence of long-chain polyphosphates
.
J Thromb Haemost
.
2013
;
11
(
7
):
1341
-
1352
.
28.
Osterud
B
,
Laake
K
,
Prydz
H
.
The activation of human factor IX
.
Thromb Diath Haemorrh
.
1975
;
33
(
3
):
553
-
563
.
29.
Enfield
DL
,
Thompson
AR
.
Cleavage and activation of human factor IX by serine proteases
.
Blood
.
1984
;
64
(
4
):
821
-
831
.
30.
Smith
SA
,
Travers
RJ
,
Morrissey
JH
.
How it all starts: initiation of the clotting cascade
.
Crit Rev Biochem Mol Biol
.
2015
;
50
(
4
):
326
-
336
.
31.
Almizraq
RJ
,
Seghatchian
J
,
Holovati
JL
,
Acker
JP
.
Extracellular vesicle characteristics in stored red blood cell concentrates are influenced by the method of detection
.
Transfus Apheresis Sci
.
2017
;
56
(
2
):
254
-
260
.
32.
Danesh
A
,
Inglis
HC
,
Jackman
RP
, et al
.
Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro
.
Blood
.
2014
;
123
(
5
):
687
-
696
.
33.
Falati
S
,
Liu
Q
,
Gross
P
, et al
.
Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin
.
J Exp Med
.
2003
;
197
(
11
):
1585
-
1598
.
34.
Yang
A
,
Chen
F
,
He
C
, et al
.
The procoagulant activity of apoptotic cells is mediated by interaction with factor XII
.
Front Immunol
.
2017
;
8
:
1188
.
35.
Griep
MA
,
Fujikawa
K
,
Nelsestuen
GL
.
Binding and activation properties of human factor XII, prekallikrein, and derived peptides with acidic lipid vesicles
.
Biochemistry
.
1985
;
24
(
15
):
4124
-
4130
.
36.
Yang
A
,
Dai
J
,
Xie
Z
, et al
.
High molecular weight kininogen binds phosphatidylserine and opsonizes urokinase plasminogen activator receptor-mediated efferocytosis
.
J Immunol
.
2014
;
192
(
9
):
4398
-
4408
.
37.
Shariat-Madar
Z
,
Mahdi
F
,
Schmaier
AH
.
Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator
.
J Biol Chem
.
2002
;
277
(
20
):
17962
-
17969
.
38.
Prudent
M
,
Crettaz
D
,
Delobel
J
,
Seghatchian
J
,
Tissot
JD
,
Lion
N
.
Differences between calcium-stimulated and storage-induced erythrocyte-derived microvesicles
.
Transfus Apheresis Sci
.
2015
;
53
(
2
):
153
-
158
.
39.
Kishimoto
TK
,
Viswanathan
K
,
Ganguly
T
, et al
.
Contaminated heparin associated with adverse clinical events and activation of the contact system
.
N Engl J Med
.
2008
;
358
(
23
):
2457
-
2467
.
40.
Sun
Y
,
Gailani
D
.
Identification of a factor IX binding site on the third apple domain of activated factor XI
.
J Biol Chem
.
1996
;
271
(
46
):
29023
-
29028
.
41.
van Beers
EJ
,
Schaap
MCL
,
Berckmans
RJ
, et al;
CURAMA study group
.
Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease
.
Haematologica
.
2009
;
94
(
11
):
1513
-
1519
.
42.
Tuinman
PR
,
Vlaar
AP
,
Cornet
AD
, et al
.
Blood transfusion during cardiac surgery is associated with inflammation and coagulation in the lung: a case control study
.
Crit Care
.
2011
;
15
(
1
):
R59
.
43.
Weisel
JW
,
Litvinov
RI
.
Red blood cells: the forgotten player in hemostasis and thrombosis
.
J Thromb Haemost
.
2019
;
17
(
2
):
271
-
282
.
44.
Byrnes
JR
,
Wolberg
AS
.
Red blood cells in thrombosis
.
Blood
.
2017
;
130
(
16
):
1795
-
1799
.
45.
Kim
Y
,
Xia
BT
,
Jung
AD
, et al
.
Microparticles from stored red blood cells promote a hypercoagulable state in a murine model of transfusion
.
Surgery
.
2018
;
163
(
2
):
423
-
429
.
46.
Spinella
PC
,
Carroll
CL
,
Staff
I
, et al
.
Duration of red blood cell storage is associated with increased incidence of deep vein thrombosis and in hospital mortality in patients with traumatic injuries
.
Crit Care
.
2009
;
13
(
5
):
R151
.
47.
Jones
AR
,
Patel
RP
,
Marques
MB
, et al;
PROPPR Study Group
.
Older blood is associated with increased mortality and adverse events in massively transfused trauma patients: secondary analysis of the PROPPR trial
.
Ann Emerg Med
.
2019
;
73
(
6
):
650
-
661
.
48.
Pagano
MB
,
Ness
PM
,
Chajewski
OS
,
King
KE
,
Wu
Y
,
Tobian
AA
.
Hypotensive transfusion reactions in the era of prestorage leukoreduction
.
Transfusion
.
2015
;
55
(
7
):
1668
-
1674
.
49.
Renné
T
,
Pozgajová
M
,
Grüner
S
, et al
.
Defective thrombus formation in mice lacking coagulation factor XII
.
J Exp Med
.
2005
;
202
(
2
):
271
-
281
.
50.
Matafonov
A
,
Leung
PY
,
Gailani
AE
, et al
.
Factor XII inhibition reduces thrombus formation in a primate thrombosis model
.
Blood
.
2014
;
123
(
11
):
1739
-
1746
.
51.
Merkulov
S
,
Zhang
WM
,
Komar
AA
, et al
.
Deletion of murine kininogen gene 1 (mKng1) causes loss of plasma kininogen and delays thrombosis
.
Blood
.
2008
;
111
(
3
):
1274
-
1281
.
52.
Bird
JE
,
Smith
PL
,
Wang
X
, et al
.
Effects of plasma kallikrein deficiency on haemostasis and thrombosis in mice: murine ortholog of the Fletcher trait
.
Thromb Haemost
.
2012
;
107
(
6
):
1141
-
1150
.
53.
Kokoye
Y
,
Ivanov
I
,
Cheng
Q
, et al
.
A comparison of the effects of factor XII deficiency and prekallikrein deficiency on thrombus formation
.
Thromb Res
.
2016
;
140
:
118
-
124
.
54.
Key
NS
.
Epidemiologic and clinical data linking factors XI and XII to thrombosis
.
Hematology Am Soc Hematol Educ Program
.
2014
;
2014
(
1
):
66
-
70
.
55.
Tillman
BF
,
Gruber
A
,
McCarty
OJT
,
Gailani
D
.
Plasma contact factors as therapeutic targets
.
Blood Rev
.
2018
;
32
(
6
):
433
-
448
.
56.
Fredenburgh
JC
,
Gross
PL
,
Weitz
JI
.
Emerging anticoagulant strategies
.
Blood
.
2017
;
129
(
2
):
147
-
154
.
57.
Schmaier
AH
,
Bauer
KA
,
Cicardi
M
, et al
Effect of lanadelumab on coagulation parameters in patients with hereditary angioedema: findings from the phase 3 HELP study [abstract]. J Allergy Clin Immunol.
2019
;143(2). Abstract AB41.
58.
Tans
G
,
Janssen-Claessen
T
,
Rosing
J
,
Griffin
JH
.
Studies on the effect of serine protease inhibitors on activated contact factors. Application in amidolytic assays for factor XIIa, plasma kallikrein and factor XIa
.
Eur J Biochem
.
1987
;
164
(
3
):
637
-
642
.
59.
Lanchantin
GF
,
Friedmann
JA
,
Hart
DW
.
Interaction of soybean trypsin inhibitor with thrombin and its effect on prothrombin activation
.
J Biol Chem
.
1969
;
244
(
3
):
865
-
875
.
60.
Almizraq
RJ
,
Norris
PJ
,
Inglis
H
, et al
.
Blood manufacturing methods affect red blood cell product characteristics and immunomodulatory activity
.
Blood Adv
.
2018
;
2
(
18
):
2296
-
2306
.
You do not currently have access to this content.