Key Points

  • VTE is the second most common cause of noncancer-related deaths in patients with malignancy, yet its mechanisms remain poorly defined.

  • Increased tryptophan metabolites in a colon cancer model activated the AHR TF/PAI-1 axis in the venous wall to induce thrombosis.

Abstract

Patients with malignancy are at 4- to 7-fold higher risk of venous thromboembolism (VTE), a potentially fatal, yet preventable complication. Although general mechanisms of thrombosis are enhanced in these patients, malignancy-specific triggers and their therapeutic implication remain poorly understood. Here we examined a colon cancer–specific VTE model and probed a set of metabolites with prothrombotic propensity in the inferior vena cava (IVC) ligation model. Athymic mice injected with human colon adenocarcinoma cells exhibited significantly higher IVC clot weights, a biological readout of venous thrombogenicity, compared with the control mice. Targeted metabolomics analysis of plasma of mice revealed an increase in the blood levels of kynurenine and indoxyl sulfate (tryptophan metabolites) in xenograft-bearing mice, which correlated positively with the increase in the IVC clot size. These metabolites are ligands of aryl hydrocarbon receptor (AHR) signaling. Accordingly, plasma from the xenograft-bearing mice activated the AHR pathway and augmented tissue factor (TF) and plasminogen activator inhibitor 1 (PAI-1) levels in venous endothelial cells in an AHR-dependent manner. Consistent with these findings, the endothelium from the IVC of xenograft-bearing animals revealed nuclear AHR and upregulated TF and PAI-1 expression, telltale signs of an activated AHR-TF/PAI-1 axis. Importantly, pharmacological inhibition of AHR activity suppressed TF and PAI-1 expression in endothelial cells of the IVC and reduced clot weights in both kynurenine-injected and xenograft-bearing mice. Together, these data show dysregulated tryptophan metabolites in a mouse cancer model, and they reveal a novel link between these metabolites and the control of the AHR-TF/PAI-1 axis and VTE in cancer.

REFERENCES

REFERENCES
1.
Hisada
Y
,
Mackman
N
.
Cancer-associated pathways and biomarkers of venous thrombosis
.
Blood
.
2017
;
130
(
13
):
1499
-
1506
.
2.
Heit
JA
,
O’Fallon
WM
,
Petterson
TM
, et al
.
Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a population-based study
.
Arch Intern Med
.
2002
;
162
(
11
):
1245
-
1248
.
3.
Blom
JW
,
Vanderschoot
JP
,
Oostindiër
MJ
,
Osanto
S
,
van der Meer
FJ
,
Rosendaal
FR
.
Incidence of venous thrombosis in a large cohort of 66,329 cancer patients: results of a record linkage study
.
J Thromb Haemost
.
2006
;
4
(
3
):
529
-
535
.
4.
Khorana
AA
,
Francis
CW
,
Culakova
E
,
Kuderer
NM
,
Lyman
GH
.
Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients
.
Cancer
.
2007
;
110
(
10
):
2339
-
2346
.
5.
Stein
PD
,
Beemath
A
,
Meyers
FA
,
Skaf
E
,
Sanchez
J
,
Olson
RE
.
Incidence of venous thromboembolism in patients hospitalized with cancer
.
Am J Med
.
2006
;
119
(
1
):
60
-
68
.
6.
Levitan
N
,
Dowlati
A
,
Remick
SC
, et al
.
Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data
.
Medicine (Baltimore)
.
1999
;
78
(
5
):
285
-
291
.
7.
Khorana
AA
,
Francis
CW
,
Culakova
E
,
Kuderer
NM
,
Lyman
GH
.
Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy
.
J Thromb Haemost
.
2007
;
5
(
3
):
632
-
634
.
8.
White
RH
,
Chew
H
,
Wun
T
.
Targeting patients for anticoagulant prophylaxis trials in patients with cancer: who is at highest risk?
Thromb Res
.
2007
;
120
(
suppl 2
):
S29
-
S40
.
9.
Chen
N
,
Ren
M
,
Li
R
, et al
.
Bevacizumab promotes venous thromboembolism through the induction of PAI-1 in a mouse xenograft model of human lung carcinoma
.
Mol Cancer
.
2015
;
14
(
1
):
140
.
10.
Chitalia
VC
,
Shivanna
S
,
Martorell
J
, et al
.
Uremic serum and solutes increase post-vascular interventional thrombotic risk through altered stability of smooth muscle cell tissue factor
.
Circulation
.
2013
;
127
(
3
):
365
-
376
.
11.
Shashar
M
,
Belghasem
ME
,
Matsuura
S
, et al
.
Targeting STUB1-tissue factor axis normalizes hyperthrombotic uremic phenotype without increasing bleeding risk
.
Sci Transl Med
.
2017
;
9
(
417
):
12.
Gondouin
B
,
Cerini
C
,
Dou
L
, et al
.
Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway
.
Kidney Int
.
2013
;
84
(
4
):
733
-
744
.
13.
Kolachalama
VB
,
Shashar
M
,
Alousi
F
, et al
.
Uremic solute-aryl hydrocarbon receptor-tissue factor axis associates with thrombosis after vascular injury in humans
.
J Am Soc Nephrol
.
2018
;
29
(
3
):
1063
-
1072
.
14.
Shashar
M
,
Francis
J
,
Chitalia
V
.
Thrombosis in the uremic milieu—emerging role of “thrombolome”
.
Semin Dial
.
2015
;
28
(
2
):
198
-
205
.
15.
Shivanna
S
,
Kolandaivelu
K
,
Shashar
M
, et al
.
The Aryl hydrocarbon receptor is a critical regulator of tissue factor stability and an antithrombotic target in uremia
.
J Am Soc Nephrol
.
2016
;
27
(
1
):
189
-
201
.
16.
Son
DS
,
Rozman
KK
.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces plasminogen activator inhibitor-1 through an aryl hydrocarbon receptor-mediated pathway in mouse hepatoma cell lines
.
Arch Toxicol
.
2002
;
76
(
7
):
404
-
413
.
17.
Wang
F
,
Shi
S
,
Zhang
R
,
Hankinson
O
.
Identifying target genes of the aryl hydrocarbon receptor nuclear translocator (Arnt) using DNA microarray analysis
.
Biol Chem
.
2006
;
387
(
9
):
1215
-
1218
.
18.
Murray
IA
,
Patterson
AD
,
Perdew
GH
.
Aryl hydrocarbon receptor ligands in cancer: friend and foe
.
Nat Rev Cancer
.
2014
;
14
(
12
):
801
-
814
.
19.
Suzuki
Y
,
Suda
T
,
Furuhashi
K
, et al
.
Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer
.
Lung Cancer
.
2010
;
67
(
3
):
361
-
365
.
20.
Zhai
L
,
Dey
M
,
Lauing
KL
, et al
.
The kynurenine to tryptophan ratio as a prognostic tool for glioblastoma patients enrolling in immunotherapy
.
J Clin Neurosci
.
2015
;
22
(
12
):
1964
-
1968
.
21.
de Jong
RA
,
Nijman
HW
,
Boezen
HM
, et al
.
Serum tryptophan and kynurenine concentrations as parameters for indoleamine 2,3-dioxygenase activity in patients with endometrial, ovarian, and vulvar cancer
.
Int J Gynecol Cancer
.
2011
;
21
(
7
):
1320
-
1327
.
22.
Uno
K
,
Homma
S
,
Satoh
T
, et al
.
Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer
.
Br J Cancer
.
2007
;
96
(
2
):
290
-
295
.
23.
Puccetti
P
,
Fallarino
F
,
Italiano
A
, et al
.
Accumulation of an endogenous tryptophan-derived metabolite in colorectal and breast cancers
.
PLoS One
.
2015
;
10
(
4
):
e0122046
.
24.
Engin
AB
,
Karahalil
B
,
Karakaya
AE
,
Engin
A
.
Helicobacter pylori and serum kynurenine-tryptophan ratio in patients with colorectal cancer
.
World J Gastroenterol
.
2015
;
21
(
12
):
3636
-
3643
.
25.
Wolf
H
,
Brown
RR
,
Nyholm
K
.
Studies on tryptophan metabolism in Danish bladder cancer patients
.
Acta Vitaminol Enzymol
.
1975
;
29
(
1-6
):
117
-
122
.
26.
Chung
KT
,
Gadupudi
GS
.
Possible roles of excess tryptophan metabolites in cancer
.
Environ Mol Mutagen
.
2011
;
52
(
2
):
81
-
104
.
27.
Pichler
R
,
Fritz
J
,
Heidegger
I
, et al
.
Predictive and prognostic role of serum neopterin and tryptophan breakdown in prostate cancer
.
Cancer Sci
.
2017
;
108
(
4
):
663
-
670
.
28.
Shashar
M
,
Siwak
J
,
Tapan
U
, et al
.
c-Cbl mediates the degradation of tumorigenic nuclear β-catenin contributing to the heterogeneity in Wnt activity in colorectal tumors
.
Oncotarget
.
2016
;
7
(
44
):
71136
-
71150
.
29.
Wang
JG
,
Geddings
JE
,
Aleman
MM
, et al
.
Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer
.
Blood
.
2012
;
119
(
23
):
5543
-
5552
.
30.
Hiles
LCA
,
Palmer
O
,
Emamdjomeh
A
, et al
.
Impact of solid tumors on venous thrombosis: a novel unified model to understand cancer-associated thrombosis
.
Circulation
.
2018
;
134
(
suppl 1
):
20227
.
31.
Diaz
JA
,
Obi
AT
,
Myers
DD
Jr.
, et al
.
Critical review of mouse models of venous thrombosis
.
Arterioscler Thromb Vasc Biol
.
2012
;
32
(
3
):
556
-
562
.
32.
Zhang
A
,
Rijal
K
,
Ng
SK
,
Ravid
K
,
Chitalia
V
.
A mass spectrometric method for quantification of tryptophan-derived uremic solutes in human serum
.
J Biol Methods
.
2017
;
4
(
3
):
e75
.
33.
Chantrathammachart
P
,
Mackman
N
,
Sparkenbaugh
E
, et al
.
Tissue factor promotes activation of coagulation and inflammation in a mouse model of sickle cell disease
.
Blood
.
2012
;
120
(
3
):
636
-
646
.
34.
Luyendyk
JP
,
Cantor
GH
,
Kirchhofer
D
,
Mackman
N
,
Copple
BL
,
Wang
R
.
Tissue factor-dependent coagulation contributes to alpha-naphthylisothiocyanate-induced cholestatic liver injury in mice
.
Am J Physiol Gastrointest Liver Physiol
.
2009
;
296
(
4
):
G840
-
G849
.
35.
Zuo
H
,
Ueland
PM
,
Ulvik
A
, et al
.
Plasma biomarkers of inflammation, the kynurenine pathway, and risks of all-cause, cancer, and cardiovascular disease mortality: the Hordaland Health Study
.
Am J Epidemiol
.
2016
;
183
(
4
):
249
-
258
.
36.
Mackman
N
.
Triggers, targets and treatments for thrombosis
.
Nature
.
2008
;
451
(
7181
):
914
-
918
.
37.
Day
SM
,
Reeve
JL
,
Pedersen
B
, et al
.
Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall
.
Blood
.
2005
;
105
(
1
):
192
-
198
.
38.
Walczak
K
,
Dąbrowski
W
,
Langner
E
, et al
.
Kynurenic acid synthesis and kynurenine aminotransferases expression in colon derived normal and cancer cells
.
Scand J Gastroenterol
.
2011
;
46
(
7-8
):
903
-
912
.
39.
Qi
Y
,
Wang
R
,
Zhao
L
, et al
.
Celastrol suppresses tryptophan catabolism in human colon cancer cells as revealed by metabolic profiling and targeted metabolite analysis
.
Biol Pharm Bull
.
2018
;
41
(
8
):
1243
-
1250
.
40.
Fan
TW
,
El-Amouri
SS
,
Macedo
JKA
, et al
.
Stable isotope-resolved metabolomics shows metabolic resistance to anti-cancer selenite in 3D spheroids versus 2D cell cultures
.
Metabolites
.
2018
;
8
(
3
):
E40
.
41.
Riedl
A
,
Schlederer
M
,
Pudelko
K
, et al
.
Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses
.
J Cell Sci
.
2017
;
130
(
1
):
203
-
218
.
42.
Chen
L
,
Tai
WC
,
Brar
MS
,
Leung
FC
,
Hsiao
WL
.
Tumor grafting induces changes of gut microbiota in athymic nude mice in the presence and absence of medicinal Gynostemma saponins
.
PLoS One
.
2015
;
10
(
5
):
e0126807
.
43.
Sobhani
I
,
Tap
J
,
Roudot-Thoraval
F
, et al
.
Microbial dysbiosis in colorectal cancer (CRC) patients
.
PLoS One
.
2011
;
6
(
1
):
e16393
.
44.
Zackular
JP
,
Baxter
NT
,
Iverson
KD
, et al
.
The gut microbiome modulates colon tumorigenesis
.
MBio
.
2013
;
4
(
6
):
e00692
-
e13
.
45.
Khorana
AA
,
McCrae
KR
.
Risk stratification strategies for cancer-associated thrombosis: an update
.
Thromb Res
.
2014
;
133
(
suppl 2
):
S35
-
S38
.
46.
Sun
C
,
Li
T
,
Song
X
, et al
.
Spatially resolved metabolomics to discover tumor-associated metabolic alterations
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
1
):
52
-
57
.
47.
Vander Heiden
MG
,
DeBerardinis
RJ
.
Understanding the Intersections between Metabolism and Cancer Biology
.
Cell
.
2017
;
168
(
4
):
657
-
669
.
48.
Furie
B
,
Furie
BC
.
Cancer-associated thrombosis
.
Blood Cells Mol Dis
.
2006
;
36
(
2
):
177
-
181
.
49.
Yang
K
,
Du
C
,
Wang
X
, et al
.
Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease-associated thrombosis in mice
.
Blood
.
2017
;
129
(
19
):
2667
-
2679
.
50.
Becattini
C
,
Agnelli
G
.
Aspirin for prevention and treatment of venous thromboembolism
.
Blood Rev
.
2014
;
28
(
3
):
103
-
108
.
51.
Steffel
J
,
Lüscher
TF
,
Tanner
FC
.
Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications
.
Circulation
.
2006
;
113
(
5
):
722
-
731
.
52.
Vondrácek
J
,
Umannová
L
,
Machala
M
.
Interactions of the aryl hydrocarbon receptor with inflammatory mediators: beyond CYP1A regulation
.
Curr Drug Metab
.
2011
;
12
(
2
):
89
-
103
.
53.
McMahon
B
,
Kwaan
HC
.
The plasminogen activator system and cancer
.
Pathophysiol Haemost Thromb
.
2008
;
36
(
3-4
):
184
-
194
.
54.
Placencio
VR
,
DeClerck
YA
.
Plasminogen activator inhibitor-1 in cancer: rationale and insight for future therapeutic testing
.
Cancer Res
.
2015
;
75
(
15
):
2969
-
2974
.
55.
Lyman
GH
,
Khorana
AA
,
Kuderer
NM
, et al;
American Society of Clinical Oncology Clinical Practice
.
Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology clinical practice guideline update
.
J Clin Oncol
.
2013
;
31
(
17
):
2189
-
2204
.
56.
Ay
C
,
Dunkler
D
,
Marosi
C
, et al
.
Prediction of venous thromboembolism in cancer patients
.
Blood
.
2010
;
116
(
24
):
5377
-
5382
.
57.
Santi
RM
,
Ceccarelli
M
,
Catania
G
, et al
.
PO-03—Khorana score and histotype predict the incidence of early venous thromboembolism (VTE) in Non Hodgkin Lymphoma (NHL). A pooled data analysis of twelve clinical trials of Fondazione Italiana Linfomi (FIL)
.
Thromb Res
.
2016
;
140
(
suppl 1
):
S177
.
58.
Noble
S
,
Alikhan
R
,
Robbins
A
,
Macbeth
F
,
Hood
K
.
Predictors of active cancer thromboembolic outcomes: validation of the Khorana score among patients with lung cancer: comment
.
J Thromb Haemost
.
2017
;
15
(
3
):
590
-
591
.
59.
Stejskalova
L
,
Dvorak
Z
,
Pavek
P
.
Endogenous and exogenous ligands of aryl hydrocarbon receptor: current state of art
.
Curr Drug Metab
.
2011
;
12
(
2
):
198
-
212
.
60.
Grover
SP
,
Mackman
N
.
Neutrophils, NETs, and immunothrombosis
.
Blood
.
2018
;
132
(
13
):
1360
-
1361
.
You do not currently have access to this content.