Key Points

  • A novel JAK2 insertion/deletion mutation is associated with eosinophilia and erythrocytosis, possibly representing a new clinical entity.

  • JAK2ex13InDel leads to constitutive activation and promotes signaling through β common chain–based receptors in the absence of ligand.

Abstract

The V617F mutation in the JH2 domain of Janus kinase 2 (JAK2) is an oncogenic driver in several myeloproliferative neoplasms (MPNs), including essential thrombocythemia, myelofibrosis, and polycythemia vera (PV). Other mutations in JAK2 have been identified in MPNs, most notably exon 12 mutations in PV. Here, we describe a novel recurrent mutation characterized by a common 4-amino-acid deletion and variable 1-amino-acid insertion (Leu583-Ala586DelInsSer/Gln/Pro) within the JH2 domain of JAK2. All 4 affected patients had eosinophilia, and both patients with Leu583-Ala586DelInsSer fulfilled diagnostic criteria of both PV and chronic eosinophilic leukemia (CEL). Computational and functional studies revealed that Leu583-Ala586DelInsSer (herein referred to as JAK2ex13InDel) deregulates JAK2 through a mechanism similar to JAK2V617F, activates signal transducer and activator of transcription 5 and extracellular signal-regulated kinase, and transforms parental Ba/F3 cells to growth factor independence. In contrast to JAK2V617F, JAK2ex13InDel does not require an exogenous homodimeric type 1 cytokine receptor to transform Ba/F3 cells and is capable of activating β common chain family cytokine receptor (interleukin-3 receptor [IL-3R], IL-5R, and granulocyte-macrophage colony stimulating factor receptor) signaling in the absence of ligand, with the maximum effect observed for IL-5R, consistent with the clinical phenotype of eosinophilia. Recognizing this new PV/CEL-overlap MPN has significant clinical implications, as both PV and CEL patients are at high risk for thrombosis, and concomitant cytoreduction of red cells, neutrophils, and eosinophils may be required for prevention of thromboembolic events. Targeted next-generation sequencing for genes recurrently mutated in myeloid malignancies in patients with unexplained eosinophilia may reveal additional cases of Leu583-Ala586DelInsSer/Gln/Pro, allowing for complete characterization of this unique MPN.

REFERENCES

REFERENCES
1.
Goerttler
PS
,
Steimle
C
,
März
E
, et al
.
The Jak2V617F mutation, PRV-1 overexpression, and EEC formation define a similar cohort of MPD patients
.
Blood
.
2005
;
106
(
8
):
2862
-
2864
.
2.
Baxter
EJ
,
Scott
LM
,
Campbell
PJ
, et al;
Cancer Genome Project
.
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
.
Lancet
.
2005
;
365
(
9464
):
1054
-
1061
.
3.
Percy
MJ
,
Scott
LM
,
Erber
WN
, et al
.
The frequency of JAK2 exon 12 mutations in idiopathic erythrocytosis patients with low serum erythropoietin levels
.
Haematologica
.
2007
;
92
(
12
):
1607
-
1614
.
4.
Scott
LM
.
The JAK2 exon 12 mutations: a comprehensive review
.
Am J Hematol
.
2011
;
86
(
8
):
668
-
676
.
5.
Scott
LM
,
Tong
W
,
Levine
RL
, et al
.
JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis
.
N Engl J Med
.
2007
;
356
(
5
):
459
-
468
.
6.
Benton
CB
,
Boddu
PC
,
DiNardo
CD
, et al
.
Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia
.
Cancer
.
2019
;
125
(
11
):
1855
-
1866
.
7.
Lanikova
L
,
Babosova
O
,
Swierczek
S
, et al
.
Coexistence of gain-of-function JAK2 germ line mutations with JAK2V617F in polycythemia vera
.
Blood
.
2016
;
128
(
18
):
2266
-
2270
.
8.
Kapralova
K
,
Horvathova
M
,
Pecquet
C
, et al
.
Cooperation of germ line JAK2 mutations E846D and R1063H in hereditary erythrocytosis with megakaryocytic atypia
.
Blood
.
2016
;
128
(
10
):
1418
-
1423
.
9.
Marty
C
,
Saint-Martin
C
,
Pecquet
C
, et al
.
Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors
.
Blood
.
2014
;
123
(
9
):
1372
-
1383
.
10.
Etheridge
SL
,
Cosgrove
ME
,
Sangkhae
V
, et al
.
A novel activating, germline JAK2 mutation, JAK2R564Q, causes familial essential thrombocytosis
.
Blood
.
2014
;
123
(
7
):
1059
-
1068
.
11.
Rumi
E
,
Harutyunyan
AS
,
Casetti
I
, et al
.
A novel germline JAK2 mutation in familial myeloproliferative neoplasms
.
Am J Hematol
.
2014
;
89
(
1
):
117
-
118
.
12.
Lu
X
,
Levine
R
,
Tong
W
, et al
.
Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation
.
Proc Natl Acad Sci USA
.
2005
;
102
(
52
):
18962
-
18967
.
13.
Guthridge
MA
,
Stomski
FC
,
Thomas
D
, et al
.
Mechanism of activation of the GM-CSF, IL-3, and IL-5 family of receptors
.
Stem Cells
.
1998
;
16
(
5
):
301
-
313
.
14.
Leroy
E
,
Dusa
A
,
Colau
D
, et al
.
Uncoupling JAK2 V617F activation from cytokine-induced signalling by modulation of JH2 αC helix
.
Biochem J
.
2016
;
473
(
11
):
1579
-
1591
.
15.
Ungureanu
D
,
Wu
J
,
Pekkala
T
, et al
.
The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling
.
Nat Struct Mol Biol
.
2011
;
18
(
9
):
971
-
976
.
16.
Prchal
JF
,
Axelrad
AA
.
Letter: Bone-marrow responses in polycythemia vera
.
N Engl J Med
.
1974
;
290
(
24
):
1382
.
17.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
18.
Schwaab
J
,
Umbach
R
,
Metzgeroth
G
, et al
.
KIT D816V and JAK2 V617F mutations are seen recurrently in hypereosinophilia of unknown significance
.
Am J Hematol
.
2015
;
90
(
9
):
774
-
777
.
19.
Reiter
A
,
Gotlib
J
.
Myeloid neoplasms with eosinophilia
.
Blood
.
2017
;
129
(
6
):
704
-
714
.
20.
Riss
TL
,
Moravec
RA
,
Niles
AL
, et al
. Cell viability assays. In:
Sittampalam
GS
,
Coussens
NP
,
Brimacombe
K
, eds., et al
.
Assay Guidance Manual
,
Bethesda, MD
:
Eli Lilly & Company and the National Center for Advancing Translational Sciences
;
2004
:
290
-
296
.
21.
Swierczek
S
,
Lima
LT
,
Tashi
T
,
Kim
SJ
,
Gregg
XT
,
Prchal
JT
.
Presence of polyclonal hematopoiesis in females with Ph-negative myeloproliferative neoplasms
.
Leukemia
.
2015
;
29
(
12
):
2432
-
2434
.
22.
Swierczek
SI
,
Piterkova
L
,
Jelinek
J
, et al
.
Methylation of AR locus does not always reflect X chromosome inactivation state
.
Blood
.
2012
;
119
(
13
):
e100
-
e109
.
23.
Swierczek
SI
,
Agarwal
N
,
Nussenzveig
RH
, et al
.
Hematopoiesis is not clonal in healthy elderly women
.
Blood
.
2008
;
112
(
8
):
3186
-
3193
.
24.
Nussenzveig
RH
,
Swierczek
SI
,
Jelinek
J
, et al
.
Polycythemia vera is not initiated by JAK2V617F mutation
.
Exp Hematol
.
2007
;
35
(
1
):
32
-
38
.
25.
Kralovics
R
,
Stockton
DW
,
Prchal
JT
.
Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease
.
Blood
.
2003
;
102
(
10
):
3793
-
3796
.
26.
Kelley
LA
,
Mezulis
S
,
Yates
CM
,
Wass
MN
,
Sternberg
MJ
.
The Phyre2 web portal for protein modeling, prediction and analysis
.
Nat Protoc
.
2015
;
10
(
6
):
845
-
858
.
27.
Bandaranayake
RM
,
Ungureanu
D
,
Shan
Y
,
Shaw
DE
,
Silvennoinen
O
,
Hubbard
SR
.
Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F
.
Nat Struct Mol Biol
.
2012
;
19
(
8
):
754
-
759
.
28.
Pardanani
A
,
Lasho
T
,
Wassie
E
, et al
.
Predictors of survival in WHO-defined hypereosinophilic syndrome and idiopathic hypereosinophilia and the role of next-generation sequencing
.
Leukemia
.
2016
;
30
(
9
):
1924
-
1926
.
29.
Liu
E
,
Jelinek
J
,
Pastore
YD
,
Guan
Y
,
Prchal
JF
,
Prchal
JT
.
Discrimination of polycythemias and thrombocytoses by novel, simple, accurate clonality assays and comparison with PRV-1 expression and BFU-E response to erythropoietin
.
Blood
.
2003
;
101
(
8
):
3294
-
3301
.
30.
Kralovics
R
,
Guan
Y
,
Prchal
JT
.
Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera
.
Exp Hematol
.
2002
;
30
(
3
):
229
-
236
.
31.
Li
J
,
Kent
DG
,
Godfrey
AL
, et al
.
JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease
.
Blood
.
2014
;
123
(
20
):
3139
-
3151
.
32.
Chen
GL
,
Prchal
JT
.
X-linked clonality testing: interpretation and limitations
.
Blood
.
2007
;
110
(
5
):
1411
-
1419
.
33.
Kralovics
R
,
Teo
SS
,
Li
S
, et al
.
Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders
.
Blood
.
2006
;
108
(
4
):
1377
-
1380
.
34.
Levine
RL
,
Belisle
C
,
Wadleigh
M
, et al
.
X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis
.
Blood
.
2006
;
107
(
10
):
4139
-
4141
.
35.
Shan
Y
,
Gnanasambandan
K
,
Ungureanu
D
, et al
.
Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase
.
Nat Struct Mol Biol
.
2014
;
21
(
7
):
579
-
584
.
36.
Badrinarayan
P
,
Sastry
GN
.
Rational approaches towards lead optimization of kinase inhibitors: the issue of specificity
.
Curr Pharm Des
.
2013
;
19
(
26
):
4714
-
4738
.
37.
Rosano
GL
,
Ceccarelli
EA
.
Recombinant protein expression in Escherichia coli: advances and challenges
.
Front Microbiol
.
2014
;
5
:
172
.
38.
Vainchenker
W
,
Constantinescu
SN
.
A unique activating mutation in JAK2 (V617F) is at the origin of polycythemia vera and allows a new classification of myeloproliferative diseases
.
Hematology (Am Soc Hematol Educ Program)
.
2005
;
2005
(
1
):
195
-
200
.
39.
Takamoto
M
,
Sugane
K
.
Synergism of IL-3, IL-5, and GM-CSF on eosinophil differentiation and its application for an assay of murine IL-5 as an eosinophil differentiation factor
.
Immunol Lett
.
1995
;
45
(
1-2
):
43
-
46
.
40.
Broughton
SE
,
Hercus
TR
,
Nero
TL
, et al
.
A dual role for the N-terminal domain of the IL-3 receptor in cell signalling
.
Nat Commun
.
2018
;
9
(
1
):
386
.
41.
Losdyck
E
,
Hornakova
T
,
Springuel
L
, et al
.
Distinct acute lymphoblastic leukemia (ALL)-associated Janus kinase 3 (JAK3) mutants exhibit different cytokine-receptor requirements and JAK inhibitor specificities
.
J Biol Chem
.
2015
;
290
(
48
):
29022
-
29034
.
42.
Tang
W
,
Huo
H
,
Zhu
J
, et al
.
Critical sites for the interaction between IL-2Rgamma and JAK3 and the following signaling
.
Biochem Biophys Res Commun
.
2001
;
283
(
3
):
598
-
605
.
43.
Haan
C
,
Is’harc
H
,
Hermanns
HM
, et al
.
Mapping of a region within the N terminus of Jak1 involved in cytokine receptor interaction
.
J Biol Chem
.
2001
;
276
(
40
):
37451
-
37458
.
44.
Pradhan
A
,
Lambert
QT
,
Griner
LN
,
Reuther
GW
.
Activation of JAK2-V617F by components of heterodimeric cytokine receptors
.
J Biol Chem
.
2010
;
285
(
22
):
16651
-
16663
.
45.
Ogata
N
,
Kikuchi
Y
,
Kouro
T
,
Tomonaga
M
,
Takatsu
K
.
The activation of the JAK2/STAT5 pathway is commonly involved in signaling through the human IL-5 receptor
.
Int Arch Allergy Immunol
.
1997
;
114
(
suppl 1
):
24
-
27
.
46.
Paul
CC
,
Tolbert
M
,
Mahrer
S
,
Singh
A
,
Grace
MJ
,
Baumann
MA
.
Cooperative effects of interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor: a new myeloid cell line inducible to eosinophils
.
Blood
.
1993
;
81
(
5
):
1193
-
1199
.
47.
Mui
AL
,
Wakao
H
,
O’Farrell
AM
,
Harada
N
,
Miyajima
A
.
Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs
.
EMBO J
.
1995
;
14
(
6
):
1166
-
1175
.
48.
Azam
M
,
Erdjument-Bromage
H
,
Kreider
BL
, et al
.
Interleukin-3 signals through multiple isoforms of Stat5
.
EMBO J
.
1995
;
14
(
7
):
1402
-
1411
.
49.
Vannucchi
AM
,
Kiladjian
JJ
,
Griesshammer
M
, et al
.
Ruxolitinib versus standard therapy for the treatment of polycythemia vera
.
N Engl J Med
.
2015
;
372
(
5
):
426
-
435
.
You do not currently have access to this content.