Key Points

  • Comprehensive genomic analyses of PMBL reveal new genetic drivers such as ZNF217.

  • High mutational burden, MSI, and APOBEC signatures may be additional mechanisms of sensitivity to PD-1 blockade in PMBL.

Abstract

Primary mediastinal large B-cell lymphomas (PMBLs) are aggressive tumors that typically present as large mediastinal masses in young women. PMBLs share clinical, transcriptional, and molecular features with classical Hodgkin lymphoma (cHL), including constitutive activation of nuclear factor κB (NF-κB), JAK/STAT signaling, and programmed cell death protein 1 (PD-1)–mediated immune evasion. The demonstrated efficacy of PD-1 blockade in relapsed/refractory PMBLs led to recent approval by the US Food and Drug Administration and underscored the importance of characterizing targetable genetic vulnerabilities in this disease. Here, we report a comprehensive analysis of recurrent genetic alterations —somatic mutations, somatic copy number alterations, and structural variants—in a cohort of 37 newly diagnosed PMBLs. We identified a median of 9 genetic drivers per PMBL, including known and newly identified components of the JAK/STAT and NF-κB signaling pathways and frequent B2M alterations that limit major histocompatibility complex class I expression, as in cHL. PMBL also exhibited frequent, newly identified driver mutations in ZNF217 and an additional epigenetic modifier, EZH2. The majority of these alterations were clonal, which supports their role as early drivers. In PMBL, we identified several previously uncharacterized molecular features that may increase sensitivity to PD-1 blockade, including high tumor mutational burden, microsatellite instability, and an apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) mutational signature. The shared genetic features between PMBL and cHL provide a framework for analyzing the mechanism of action of PD-1 blockade in these related lymphoid malignancies.

REFERENCES

REFERENCES
1.
Swerdlow
SH
,
Campo
E
,
Pileri
SA
, et al
.
The 2016 revision of the World Health Organization classification of lymphoid neoplasms
.
Blood
.
2016
;
127
(
20
):
2375
-
2390
.
2.
Möller
P
,
Lämmler
B
,
Eberlein-Gonska
M
, et al
.
Primary mediastinal clear cell lymphoma of B-cell type
.
Virchows Arch A Pathol Anat Histopathol
.
1986
;
409
(
1
):
79
-
92
.
3.
Möller
P
,
Lämmler
B
,
Herrmann
B
,
Otto
HF
,
Moldenhauer
G
,
Momburg
F
.
The primary mediastinal clear cell lymphoma of B-cell type has variable defects in MHC antigen expression
.
Immunology
.
1986
;
59
(
3
):
411
-
417
.
4.
Möller
P
,
Moldenhauer
G
,
Momburg
F
, et al
.
Mediastinal lymphoma of clear cell type is a tumor corresponding to terminal steps of B cell differentiation
.
Blood
.
1987
;
69
(
4
):
1087
-
1095
.
5.
Savage
KJ
,
Monti
S
,
Kutok
JL
, et al
.
The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma
.
Blood
.
2003
;
102
(
12
):
3871
-
3879
.
6.
Feuerhake
F
,
Kutok
JL
,
Monti
S
, et al
.
NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes
.
Blood
.
2005
;
106
(
4
):
1392
-
1399
.
7.
Rosenwald
A
,
Wright
G
,
Leroy
K
, et al
.
Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma
.
J Exp Med
.
2003
;
198
(
6
):
851
-
862
.
8.
Cazals-Hatem
D
,
Lepage
E
,
Brice
P
, et al
.
Primary mediastinal large B-cell lymphoma. A clinicopathologic study of 141 cases compared with 916 nonmediastinal large B-cell lymphomas, a GELA (“Groupe d’Etude des Lymphomes de l’Adulte”) study
.
Am J Surg Pathol
.
1996
;
20
(
7
):
877
-
888
.
9.
Joos
S
,
Otaño-Joos
MI
,
Ziegler
S
, et al
.
Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene
.
Blood
.
1996
;
87
(
4
):
1571
-
1578
.
10.
Schmitz
R
,
Hansmann
ML
,
Bohle
V
, et al
.
TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma
.
J Exp Med
.
2009
;
206
(
5
):
981
-
989
.
11.
Mansouri
L
,
Noerenberg
D
,
Young
E
, et al
.
Frequent NFKBIE deletions are associated with poor outcome in primary mediastinal B-cell lymphoma
.
Blood
.
2016
;
128
(
23
):
2666
-
2670
.
12.
Gunawardana
J
,
Chan
FC
,
Telenius
A
, et al
.
Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma
.
Nat Genet
.
2014
;
46
(
4
):
329
-
335
.
13.
Ritz
O
,
Guiter
C
,
Castellano
F
, et al
.
Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma
.
Blood
.
2009
;
114
(
6
):
1236
-
1242
.
14.
Viganò
E
,
Gunawardana
J
,
Mottok
A
, et al
.
Somatic IL4R mutations in primary mediastinal large B-cell lymphoma lead to constitutive JAK-STAT signaling activation
.
Blood
.
2018
;
131
(
18
):
2036
-
2046
.
15.
Green
MR
,
Monti
S
,
Rodig
SJ
, et al
.
Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma
.
Blood
.
2010
;
116
(
17
):
3268
-
3277
.
16.
Rui
L
,
Emre
NC
,
Kruhlak
MJ
, et al
.
Cooperative epigenetic modulation by cancer amplicon genes
.
Cancer Cell
.
2010
;
18
(
6
):
590
-
605
.
17.
Hao
Y
,
Chapuy
B
,
Monti
S
,
Sun
HH
,
Rodig
S
,
Shipp
MA
.
Selective JAK2 inhibition specifically decreases Hodgkin lymphoma and mediastinal large B-cell lymphoma growth in vitro and in vivo
.
Clin Cancer Res
.
2014
;
20
(
10
):
2674
-
2683
.
18.
Chapuy
B
,
Roemer
MG
,
Stewart
C
, et al
.
Targetable genetic features of primary testicular and primary central nervous system lymphomas
.
Blood
.
2016
;
127
(
7
):
869
-
881
.
19.
Green
MR
,
Rodig
S
,
Juszczynski
P
, et al
.
Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy
.
Clin Cancer Res
.
2012
;
18
(
6
):
1611
-
1618
.
20.
Twa
DD
,
Chan
FC
,
Ben-Neriah
S
, et al
.
Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma
.
Blood
.
2014
;
123
(
13
):
2062
-
2065
.
21.
Steidl
C
,
Shah
SP
,
Woolcock
BW
, et al
.
MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers
.
Nature
.
2011
;
471
(
7338
):
377
-
381
.
22.
Mottok
A
,
Woolcock
B
,
Chan
FC
, et al
.
Genomic alterations in CIITA are frequent in primary mediastinal large B cell lymphoma and are associated with diminished MHC class II expression
.
Cell Reports
.
2015
;
13
(
7
):
1418
-
1431
.
23.
Roberts
RA
,
Wright
G
,
Rosenwald
AR
, et al
.
Loss of major histocompatibility class II gene and protein expression in primary mediastinal large B-cell lymphoma is highly coordinated and related to poor patient survival
.
Blood
.
2006
;
108
(
1
):
311
-
318
.
24.
Lenz
G
,
Wright
GW
,
Emre
NC
, et al
.
Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
36
):
13520
-
13525
.
25.
Giulino-Roth
L
.
How I treat primary mediastinal B-cell lymphoma
.
Blood
.
2018
;
132
(
8
):
782
-
790
.
26.
Dunleavy
K
,
Pittaluga
S
,
Maeda
LS
, et al
.
Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma
.
N Engl J Med
.
2013
;
368
(
15
):
1408
-
1416
.
27.
Zinzani
PL
,
Ribrag
V
,
Moskowitz
CH
, et al
.
Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma
.
Blood
.
2017
;
130
(
3
):
267
-
270
.
28.
Wienand
K
,
Chapuy
B
,
Steward
C
, et al
.
Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion
.
Blood Adv
.
2019
;
3
(
23
):
4065
-
4080
.
29.
Lohr
JG
,
Stojanov
P
,
Lawrence
MS
, et al
.
Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
10
):
3879
-
3884
.
30.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
31.
Cibulskis
K
,
McKenna
A
,
Fennell
T
,
Banks
E
,
DePristo
M
,
Getz
G
.
ContEst: estimating cross-contamination of human samples in next-generation sequencing data
.
Bioinformatics
.
2011
;
27
(
18
):
2601
-
2602
.
32.
Abo
RP
,
Ducar
M
,
Garcia
EP
, et al
.
BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers
.
Nucleic Acids Res
.
2015
;
43
(
3
):
e19
.
33.
Layer
RM
,
Chiang
C
,
Quinlan
AR
,
Hall
IM
.
LUMPY: a probabilistic framework for structural variant discovery
.
Genome Biol
.
2014
;
15
(
6
):
R84
.
34.
Berger
MF
,
Lawrence
MS
,
Demichelis
F
, et al
.
The genomic complexity of primary human prostate cancer
.
Nature
.
2011
;
470
(
7333
):
214
-
220
.
35.
Wala
JA
,
Bandopadhayay
P
,
Greenwald
NF
, et al
.
SvABA: genome-wide detection of structural variants and indels by local assembly
.
Genome Res
.
2018
;
28
(
4
):
581
-
591
.
36.
Drier
Y
,
Lawrence
MS
,
Carter
SL
, et al
.
Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability
.
Genome Res
.
2013
;
23
(
2
):
228
-
235
.
37.
Carter
SL
,
Cibulskis
K
,
Helman
E
, et al
.
Absolute quantification of somatic DNA alterations in human cancer
.
Nat Biotechnol
.
2012
;
30
(
5
):
413
-
421
.
38.
Lawrence
MS
,
Stojanov
P
,
Polak
P
, et al
.
Mutational heterogeneity in cancer and the search for new cancer-associated genes
.
Nature
.
2013
;
499
(
7457
):
214
-
218
.
39.
Mermel
CH
,
Schumacher
SE
,
Hill
B
,
Meyerson
ML
,
Beroukhim
R
,
Getz
G
.
GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers
.
Genome Biol
.
2011
;
12
(
4
):
R41
.
40.
Cibulskis
K
,
Lawrence
MS
,
Carter
SL
, et al
.
Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
.
Nat Biotechnol
.
2013
;
31
(
3
):
213
-
219
.
41.
Kamburov
A
,
Lawrence
MS
,
Polak
P
, et al
.
Comprehensive assessment of cancer missense mutation clustering in protein structures
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
40
):
E5486
-
E5495
.
42.
Cohen
PA
,
Donini
CF
,
Nguyen
NT
,
Lincet
H
,
Vendrell
JA
.
The dark side of ZNF217, a key regulator of tumorigenesis with powerful biomarker value
.
Oncotarget
.
2015
;
6
(
39
):
41566
-
41581
.
43.
Challa-Malladi
M
,
Lieu
YK
,
Califano
O
, et al
.
Combined genetic inactivation of β2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma
.
Cancer Cell
.
2011
;
20
(
6
):
728
-
740
.
44.
Muppidi
JR
,
Schmitz
R
,
Green
JA
, et al
.
Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma
.
Nature
.
2014
;
516
(
7530
):
254
-
258
.
45.
Morin
RD
,
Johnson
NA
,
Severson
TM
, et al
.
Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin
.
Nat Genet
.
2010
;
42
(
2
):
181
-
185
.
46.
Yildiz
M
,
Li
H
,
Bernard
D
, et al
.
Activating STAT6 mutations in follicular lymphoma
.
Blood
.
2015
;
125
(
4
):
668
-
679
.
47.
Pasqualucci
L
,
Trifonov
V
,
Fabbri
G
, et al
.
Analysis of the coding genome of diffuse large B-cell lymphoma
.
Nat Genet
.
2011
;
43
(
9
):
830
-
837
.
48.
Morin
RD
,
Mendez-Lago
M
,
Mungall
AJ
, et al
.
Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma
.
Nature
.
2011
;
476
(
7360
):
298
-
303
.
49.
Monti
S
,
Chapuy
B
,
Takeyama
K
, et al
.
Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma
.
Cancer Cell
.
2012
;
22
(
3
):
359
-
372
.
50.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
51.
Steidl
C
,
Gascoyne
RD
.
The molecular pathogenesis of primary mediastinal large B-cell lymphoma
.
Blood
.
2011
;
118
(
10
):
2659
-
2669
.
52.
Watanabe-Smith
K
,
Tognon
C
,
Tyner
JW
,
Meijerink
JP
,
Druker
BJ
,
Agarwal
A
.
Discovery and functional characterization of a germline, CSF2RB-activating mutation in leukemia
.
Leukemia
.
2016
;
30
(
9
):
1950
-
1953
.
53.
Dorand
RD
,
Nthale
J
,
Myers
JT
, et al
.
Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity
.
Science
.
2016
;
353
(
6297
):
399
-
403
.
54.
Ramalho-Oliveira
R
,
Oliveira-Vieira
B
,
Viola
JPB
.
IRF2BP2: A new player in the regulation of cell homeostasis
.
J Leukoc Biol
.
2019
;
106
(
3
):
717
-
723
.
55.
Miloudi
H
,
Leroy
K
,
Jardin
F
,
Sola
B
.
STAT6 is a cargo of exportin 1: Biological relevance in primary mediastinal B-cell lymphoma
.
Cell Signal
.
2018
;
46
:
76
-
82
.
56.
Camus
V
,
Miloudi
H
,
Taly
A
,
Sola
B
,
Jardin
F
.
XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy
.
J Hematol Oncol
.
2017
;
10
(
1
):
47
.
57.
Jardin
F
,
Pujals
A
,
Pelletier
L
, et al
.
Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma
.
Am J Hematol
.
2016
;
91
(
9
):
923
-
930
.
58.
Morin
RD
,
Mungall
K
,
Pleasance
E
, et al
.
Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing
.
Blood
.
2013
;
122
(
7
):
1256
-
1265
.
59.
Quinlan
KG
,
Verger
A
,
Yaswen
P
,
Crossley
M
.
Amplification of zinc finger gene 217 (ZNF217) and cancer: when good fingers go bad
.
Biochim Biophys Acta
.
2007
;
1775
(
2
):
333
-
340
.
60.
Peaper
DR
,
Cresswell
P
.
Regulation of MHC class I assembly and peptide binding
.
Annu Rev Cell Dev Biol
.
2008
;
24
(
1
):
343
-
368
.
61.
Reichel
J
,
Chadburn
A
,
Rubinstein
PG
, et al
.
Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells
.
Blood
.
2015
;
125
(
7
):
1061
-
1072
.
62.
Dubois
S
,
Viailly
PJ
,
Mareschal
S
, et al
.
Next-generation sequencing in diffuse large B-cell lymphoma highlights molecular divergence and therapeutic opportunities: a LYSA study
.
Clin Cancer Res
.
2016
;
22
(
12
):
2919
-
2928
.
63.
Kim
J
,
Mouw
KW
,
Polak
P
, et al
.
Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors
.
Nat Genet
.
2016
;
48
(
6
):
600
-
606
.
64.
Abida
W
,
Cheng
ML
,
Armenia
J
, et al
.
Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade
.
JAMA Oncol
.
2019
;
5
(
4
):
471
-
478
.
65.
Wang
T
,
Lee
LH
,
Vyas
M
, et al
.
Colorectal carcinoma with double somatic mismatch repair gene inactivation: clinical and pathological characteristics and response to immune checkpoint blockade
.
Mod Pathol
.
2019
;
32
(
10
):
1551
-
1562
.
66.
Llosa
NJ
,
Cruise
M
,
Tam
A
, et al
.
The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints
.
Cancer Discov
.
2015
;
5
(
1
):
43
-
51
.
67.
Overman
MJ
,
McDermott
R
,
Leach
JL
, et al
.
Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study
.
Lancet Oncol
.
2017
;
18
(
9
):
1182
-
1191
.
68.
Wang
Z
,
Zhao
J
,
Wang
G
, et al
.
Commutations in DNA damage response pathways serve as potential biomarkers for immune checkpoint blockade
.
Cancer Res
.
2018
;
78
(
22
):
6486
-
6496
.
69.
Wang
S
,
Jia
M
,
He
Z
,
Liu
XS
.
APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer
.
Oncogene
.
2018
;
37
(
29
):
3924
-
3936
.
70.
Caval
V
,
Suspène
R
,
Shapira
M
,
Vartanian
JP
,
Wain-Hobson
S
.
A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3’UTR enhances chromosomal DNA damage
.
Nat Commun
.
2014
;
5
(
1
):
5129
.
71.
Nik-Zainal
S
,
Wedge
DC
,
Alexandrov
LB
, et al
.
Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer
.
Nat Genet
.
2014
;
46
(
5
):
487
-
491
.
72.
Shi
M
,
Roemer
MG
,
Chapuy
B
, et al
.
Expression of programmed cell death 1 ligand 2 (PD-L2) is a distinguishing feature of primary mediastinal (thymic) large B-cell lymphoma and associated with PDCD1LG2 copy gain
.
Am J Surg Pathol
.
2014
;
38
(
12
):
1715
-
1723
.
73.
Kataoka
K
,
Shiraishi
Y
,
Takeda
Y
, et al
.
Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers
.
Nature
.
2016
;
534
(
7607
):
402
-
406
.
74.
Chapuy
B
,
McKeown
MR
,
Lin
CY
, et al
.
Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma
.
Cancer Cell
.
2013
;
24
(
6
):
777
-
790
.
75.
Li
Z
,
Lim
SK
,
Liang
X
,
Lim
YP
.
The transcriptional coactivator WBP2 primes triple-negative breast cancer cells for responses to Wnt signaling via the JNK/Jun kinase pathway
.
J Biol Chem
.
2018
;
293
(
52
):
20014
-
20028
.
76.
Ennishi
D
,
Takata
K
,
Béguelin
W
, et al
.
Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition
.
Cancer Discov
.
2019
;
9
(
4
):
546
-
563
.
77.
Roemer
MG
,
Advani
RH
,
Redd
RA
, et al
.
Classical Hodgkin lymphoma with reduced β2M/MHC class I expression is associated with inferior outcome independent of 9p24.1 status
.
Cancer Immunol Res
.
2016
;
4
(
11
):
910
-
916
.
78.
Roemer
MGM
,
Redd
RA
,
Cader
FZ
, et al
.
Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma
.
J Clin Oncol
.
2018
;
36
(
10
):
942
-
950
.
79.
Carey
CD
,
Gusenleitner
D
,
Lipschitz
M
, et al
.
Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma
.
Blood
.
2017
;
130
(
22
):
2420
-
2430
.
80.
Barkal
AA
,
Weiskopf
K
,
Kao
KS
, et al
.
Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy
.
Nat Immunol
.
2018
;
19
(
1
):
76
-
84
.
81.
Zhang
CC
,
Fu
YX
.
Another way to not get eaten
.
Nat Immunol
.
2018
;
19
(
1
):
6
-
7
.
82.
Mottok
A
,
Hung
SS
,
Chavez
EA
, et al
.
Integrative genomic analysis identifies key pathogenic mechanisms in primary mediastinal large B-cell lymphoma
.
Blood
.
2019
;
134
(
10
):
802
-
813
.
83.
Alexandrov
LB
,
Nik-Zainal
S
,
Wedge
DC
, et al;
ICGC PedBrain
.
Signatures of mutational processes in human cancer
.
Nature
.
2013
;
500
(
7463
):
415
-
421
.
84.
Le
DT
,
Uram
JN
,
Wang
H
, et al
.
PD-1 blockade in tumors with mismatch-repair deficiency
.
N Engl J Med
.
2015
;
372
(
26
):
2509
-
2520
.
85.
Cerami
E
,
Gao
J
,
Dogrusoz
U
, et al
.
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
.
Cancer Discov
.
2012
;
2
(
5
):
401
-
404
.
86.
Gao
J
,
Aksoy
BA
,
Dogrusoz
U
, et al
.
Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
.
Sci Signal
.
2013
;
6
(
269
):
pl1
.
87.
Rusconi
D
,
Negri
G
,
Colapietro
P
, et al
.
Characterization of 14 novel deletions underlying Rubinstein-Taybi syndrome: an update of the CREBBP deletion repertoire
.
Hum Genet
.
2015
;
134
(
6
):
613
-
626
.
88.
Krzywinski
M
,
Schein
J
,
Birol
I
, et al
.
Circos: an information aesthetic for comparative genomics
.
Genome Res
.
2009
;
19
(
9
):
1639
-
1645
.
You do not currently have access to this content.