Key Points

  • cHL is enriched for CTLA-4–positive T cells that lack PD-1 and engage HRS cells and HRS-associated macrophages expressing CD86.

  • The CTLA-4:CD86 signaling network is distinct from PD-1:PD-1 ligand signaling network and a rational target for immunotherapy in cHL.

Abstract

Classic Hodgkin lymphoma (cHL) is a tumor composed of rare, atypical, germinal center–derived B cells (Hodgkin Reed-Sternberg [HRS] cells) embedded within a robust but ineffective inflammatory milieu. The cHL tumor microenvironment (TME) is compartmentalized into “niches” rich in programmed cell death-1 ligand (PD-L1)–positive HRS cells and tumor-associated macrophages (TAMs), which associate with PD-1–positive T cells to suppress antitumor immunity via PD-L1/PD-1 signaling. Despite the exquisite sensitivity of cHL to PD-1 checkpoint blockade, most patients eventually relapse and need therapeutic alternatives. Using multiplex immunofluorescence microscopy with digital image analysis, we found that cHL is highly enriched for non–T-regulatory, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)–positive T cells (compared with reactive lymphoid tissues) that outnumber PD-1–positive and lymphocyte-activating gene-3 (LAG-3)–positive T cells. In addition, T cells touching HRS cells are more frequently positive for CTLA-4 than for PD-1 or LAG-3. We further found that HRS cells, and a subset of TAMs, are positive for the CTLA-4 ligand CD86 and that the fractions of T cells and TAMs that are CTLA-4–positive and CD86-positive, respectively, are greater within a 75 μm HRS cell niche relative to areas outside this region (CTLA-4, 38% vs 18% [P = .0001]; CD86, 38% vs 24% [P = .0007]). Importantly, CTLA-4–positive cells are present, and focally contact HRS cells, in recurrent cHL tumors following a variety of therapies, including PD-1 blockade. These results implicate CTLA-4:CD86 interactions as a component of the immunologically privileged niche surrounding HRS cells and raise the possibility that patients with cHL refractory to PD-1 blockade may benefit from CTLA-4 blockade.

REFERENCES

REFERENCES
1.
Swerdlow
SH
,
Campo
E
,
Harris
NL
, et al
.
WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues
. Revised 4th Edition.
Lyon, France
:
IARC
;
2017
.
2.
Green
MR
,
Monti
S
,
Rodig
SJ
, et al
.
Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma
.
Blood
.
2010
;
116
(
17
):
3268
-
3277
.
3.
Roemer
MGM
,
Advani
RH
,
Ligon
AH
, et al
.
PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome
.
J Clin Oncol
.
2016
;
34
(
23
):
2690
-
2697
.
4.
Roemer
MGM
,
Advani
RH
,
Redd
RA
, et al
.
Classical Hodgkin lymphoma with reduced β2M/MHC Class I expression is associated with inferior outcome independent of 9p24.1 status
.
Cancer Immunol Res
.
2016
;
4
(
11
):
910
-
916
.
5.
Chen
BJ
,
Chapuy
B
,
Ouyang
J
, et al
.
PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies
.
Clin Cancer Res
.
2013
;
19
(
13
):
3462
-
3473
.
6.
Carey
CD
,
Gusenleitner
D
,
Lipschitz
M
, et al
.
Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma
.
Blood
.
2017
;
130
(
22
):
2420
-
2430
.
7.
Ansell
SM
,
Lesokhin
AM
,
Borrello
I
, et al
.
PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma
.
N Engl J Med
.
2015
;
372
(
4
):
311
-
319
.
8.
Younes
A
,
Santoro
A
,
Shipp
M
, et al
.
Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial
.
Lancet Oncol
.
2016
;
17
(
9
):
1283
-
1294
.
9.
Armand
P
,
Engert
A
,
Younes
A
, et al
.
Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm Phase II CheckMate 205 trial
.
J Clin Oncol
.
2018
;
36
(
14
):
1428
-
1439
.
10.
Chen
R
,
Zinzani
PL
,
Fanale
MA
, et al;
KEYNOTE-087
.
Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma
.
J Clin Oncol
.
2017
;
35
(
19
):
2125
-
2132
.
11.
Ramchandren
R
,
Domingo-Domènech
E
,
Rueda
A
, et al
.
Nivolumab for newly diagnosed advanced-stage classic Hodgkin lymphoma: safety and efficacy in the Phase II CheckMate 205 Study
.
J Clin Oncol
.
2019
;
37
(
23
):
1997
-
2007
.
12.
Iwai
Y
,
Hamanishi
J
,
Chamoto
K
,
Honjo
T
.
Cancer immunotherapies targeting the PD-1 signaling pathway
.
J Biomed Sci
.
2017
;
24
(
1
):
26
.
13.
Armand
P
,
Shipp
MA
,
Ribrag
V
, et al
.
Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure
.
J Clin Oncol
.
2016
;
34
(
31
):
3733
-
3739
.
14.
Rowshanravan
B
,
Halliday
N
,
Sansom
DM
.
CTLA-4: a moving target in immunotherapy
.
Blood
.
2018
;
131
(
1
):
58
-
67
.
15.
Huard
B
,
Prigent
P
,
Tournier
M
,
Bruniquel
D
,
Triebel
F
.
CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins
.
Eur J Immunol
.
1995
;
25
(
9
):
2718
-
2721
.
16.
Huang
CT
,
Workman
CJ
,
Flies
D
, et al
.
Role of LAG-3 in regulatory T cells
.
Immunity
.
2004
;
21
(
4
):
503
-
513
.
17.
Wang
J
,
Sanmamed
MF
,
Datar
I
, et al
.
Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3
.
Cell
.
2019
;
176
(
1-2
):
334
-
347.e12
.
18.
Ansell
S
,
Gutierrez
ME
,
Shipp
MA
, et al
.
A Phase 1 study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039)
.
Blood
.
2016
;
128
(
22
):
183
.
19.
Feng
Z
,
Puri
S
,
Moudgil
T
, et al
.
Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma
.
J Immunother Cancer
.
2015
;
3
(
1
):
47
.
20.
Selby
MJ
,
Engelhardt
JJ
,
Quigley
M
, et al
.
Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells
.
Cancer Immunol Res
.
2013
;
1
(
1
):
32
-
42
.
21.
Peggs
KS
,
Quezada
SA
,
Chambers
CA
,
Korman
AJ
,
Allison
JP
.
Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies
.
J Exp Med
.
2009
;
206
(
8
):
1717
-
1725
.
22.
Schwartz
JC
,
Zhang
X
,
Fedorov
AA
,
Nathenson
SG
,
Almo
SC
.
Structural basis for co-stimulation by the human CTLA-4/B7-2 complex
.
Nature
.
2001
;
410
(
6828
):
604
-
608
.
23.
Stamper
CC
,
Zhang
Y
,
Tobin
JF
, et al
.
Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses
.
Nature
.
2001
;
410
(
6828
):
608
-
611
.
24.
Collins
AV
,
Brodie
DW
,
Gilbert
RJC
, et al
.
The interaction properties of costimulatory molecules revisited
.
Immunity
.
2002
;
17
(
2
):
201
-
210
.
25.
Greaves
P
,
Clear
A
,
Owen
A
, et al
.
Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells
.
Blood
.
2013
;
122
(
16
):
2856
-
2863
.
26.
Vandenborre
K
,
Delabie
J
,
Boogaerts
MA
, et al
.
Human CTLA-4 is expressed in situ on T lymphocytes in germinal centers, in cutaneous graft-versus-host disease, and in Hodgkin’s disease
.
Am J Pathol
.
1998
;
152
(
4
):
963
-
973
.
27.
Delabie
J
,
Ceuppens
JL
,
Vandenberghe
P
,
de Boer
M
,
Coorevits
L
,
De Wolf-Peeters
C
.
The B7/BB1 antigen is expressed by Reed-Sternberg cells of Hodgkin’s disease and contributes to the stimulating capacity of Hodgkin’s disease-derived cell lines
.
Blood
.
1993
;
82
(
9
):
2845
-
2852
.
28.
Munro
JM
,
Freedman
AS
,
Aster
JC
, et al
.
In vivo expression of the B7 costimulatory molecule by subsets of antigen-presenting cells and the malignant cells of Hodgkin’s disease
.
Blood
.
1994
;
83
(
3
):
793
-
798
.
29.
Van Gool
SW
,
Delabie
J
,
Vandenberghe
P
,
Coorevits
L
,
De Wolf-Peeters
C
,
Ceuppens
JL
.
Expression of B7-2 (CD86) molecules by Reed-Sternberg cells of Hodgkin’s disease
.
Leukemia
.
1997
;
11
(
6
):
846
-
851
.
30.
Cader
FZ
,
Schackmann
RCJ
,
Hu
X
, et al
.
Mass cytometry of Hodgkin lymphoma reveals a CD4+ regulatory T-cell-rich and exhausted T-effector microenvironment
.
Blood
.
2018
;
132
(
8
):
825
-
836
.
31.
Creery
WD
,
Diaz-Mitoma
F
,
Filion
L
,
Kumar
A
.
Differential modulation of B7-1 and B7-2 isoform expression on human monocytes by cytokines which influence the development of T helper cell phenotype
.
Eur J Immunol
.
1996
;
26
(
6
):
1273
-
1277
.
32.
Lilly
MB
,
Zemskova
M
,
Frankel
AE
,
Salo
J
,
Kraft
AS
.
Distinct domains of the human granulocyte-macrophage colony-stimulating factor receptor alpha subunit mediate activation of Jak/Stat signaling and differentiation
.
Blood
.
2001
;
97
(
6
):
1662
-
1670
.
33.
Wolchok
JD
,
Kluger
H
,
Callahan
MK
, et al
.
Nivolumab plus ipilimumab in advanced melanoma
.
N Engl J Med
.
2013
;
369
(
2
):
122
-
133
.
34.
Wolchok
JD
,
Chiarion-Sileni
V
,
Gonzalez
R
, et al
.
Overall survival with combined nivolumab and ipilimumab in advanced melanoma
.
N Engl J Med
.
2017
;
377
(
14
):
1345
-
1356
.
35.
Merryman
RW
,
Armand
P
,
Wright
KT
,
Rodig
SJ
.
Checkpoint blockade in Hodgkin and non-Hodgkin lymphoma
.
Blood Adv
.
2017
;
1
(
26
):
2643
-
2654
.
36.
Bashey
A
,
Medina
B
,
Corringham
S
, et al
.
CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation
.
Blood
.
2009
;
113
(
7
):
1581
-
1588
.
37.
Diefenbach
CS
,
Hong
F
,
Cohen
JB
, et al
.
Preliminary safety and efficacy of the combination of brentuximab vedotin and ipilimumab in relapsed/refractory Hodgkin lymphoma: a trial of the ECOG-ACRIN Cancer Research Group (E4412)
.
Blood
.
2015
;
126
(
23
):
585
.
You do not currently have access to this content.