Key Points

  • MELK promotes EZH2 stability through phosphorylation-dependent loss of ubiquitination.

  • Overexpressed MELK mediates sensitivity to bortezomib through modulating EZH2 stability in NKTL.

Abstract

Oncogenic EZH2 is overexpressed and extensively involved in the pathophysiology of different cancers including extranodal natural killer/T-cell lymphoma (NKTL). However, the mechanisms regarding EZH2 upregulation is poorly understood, and it still remains untargetable in NKTL. In this study, we examine EZH2 protein turnover in NKTL and identify MELK kinase as a regulator of EZH2 ubiquitination and turnover. Using quantitative mass spectrometry analysis, we observed a MELK-mediated increase of EZH2 S220 phosphorylation along with a concomitant loss of EZH2 K222 ubiquitination, suggesting a phosphorylation-dependent regulation of EZH2 ubiquitination. MELK inhibition through both chemical and genetic means led to ubiquitination and destabilization of EZH2 protein. Importantly, we determine that MELK is upregulated in NKTL, and its expression correlates with EZH2 protein expression as determined by tissue microarray derived from NKTL patients. FOXM1, which connected MELK to EZH2 signaling in glioma, was not involved in mediating EZH2 ubiquitination. Furthermore, we identify USP36 as the deubiquitinating enzyme that deubiquitinates EZH2 at K222. These findings uncover an important role of MELK and USP36 in mediating EZH2 stability in NKTL. Moreover, MELK overexpression led to decreased sensitivity to bortezomib treatment in NKTL based on deprivation of EZH2 ubiquitination. Therefore, modulation of EZH2 ubiquitination status by targeting MELK may be a new therapeutic strategy for NKTL patients with poor bortezomib response.

References

References
1.
Yan
J
,
Ng
SB
,
Tay
JL
, et al
.
EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity
.
Blood
.
2013
;
121
(
22
):
4512
-
4520
.
2.
Adelaiye-Ogala
R
,
Budka
J
,
Damayanti
NP
, et al
.
EZH2 modifies sunitinib resistance in renal cell carcinoma by kinome reprogramming
.
Cancer Res
.
2017
;
77
(
23
):
6651
-
6666
.
3.
Wu
Y
,
Zhang
Z
,
Cenciarini
ME
, et al
.
Tamoxifen resistance in breast cancer is regulated by the EZH2-ERα-GREB1 transcriptional axis
.
Cancer Res
.
2018
;
78
(
3
):
671
-
684
.
4.
Gardner
EE
,
Lok
BH
,
Schneeberger
VE
, et al
.
Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis
.
Cancer Cell
.
2017
;
31
(
2
):
286
-
299
.
5.
Chang
CJ
,
Yang
JY
,
Xia
W
, et al
.
EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-β-catenin signaling
.
Cancer Cell
.
2011
;
19
(
1
):
86
-
100
.
6.
Lee
SR
,
Roh
YG
,
Kim
SK
, et al
.
Activation of EZH2 and SUZ12 regulated by E2F1 predicts the disease progression and aggressive characteristics of bladder cancer
.
Clin Cancer Res
.
2015
;
21
(
23
):
5391
-
5403
.
7.
Varambally
S
,
Cao
Q
,
Mani
RS
, et al
.
Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer
.
Science
.
2008
;
322
(
5908
):
1695
-
1699
.
8.
Wang
H
,
Meng
Y
,
Cui
Q
, et al
.
MiR-101 targets the EZH2/Wnt/β-catenin the pathway to promote the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells
.
Sci Rep
.
2016
;
6
(
1
):
36988
.
9.
Lu
W
,
Liu
S
,
Li
B
, et al
.
SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer
.
Oncogene
.
2017
;
36
(
10
):
1364
-
1373
.
10.
Chen
Y
,
Zhou
B
,
Chen
D
.
USP21 promotes cell proliferation and metastasis through suppressing EZH2 ubiquitination in bladder carcinoma
.
OncoTargets Ther
.
2017
;
10
:
681
-
689
.
11.
Lee
ST
,
Li
Z
,
Wu
Z
, et al
.
Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers
.
Mol Cell
.
2011
;
43
(
5
):
798
-
810
.
12.
Joshi
K
,
Banasavadi-Siddegowda
Y
,
Mo
X
, et al
.
MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells
.
Stem Cells
.
2013
;
31
(
6
):
1051
-
1063
.
13.
Selvarajan
V
,
Osato
M
,
Nah
GSS
, et al
.
RUNX3 is oncogenic in natural killer/T-cell lymphoma and is transcriptionally regulated by MYC
.
Leukemia
.
2017
;
31
(
10
):
2219
-
2227
.
14.
Yan
J
,
Li
B
,
Lin
B
, et al
.
EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma
.
Blood
.
2016
;
128
(
7
):
948
-
958
.
15.
Fujisaki
H
,
Kakuda
H
,
Shimasaki
N
, et al
.
Expansion of highly cytotoxic human natural killer cells for cancer cell therapy
.
Cancer Res
.
2009
;
69
(
9
):
4010
-
4017
.
16.
Vizcaíno
JA
,
Csordas
A
,
Del-Toro
N
, et al
.
2016 update of the PRIDE database and its related tools
.
Nucleic Acids Res
.
2016
;
44
(
22
):
11033
.
17.
Kim
SH
,
Joshi
K
,
Ezhilarasan
R
, et al
.
EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner
.
Stem Cell Reports
.
2015
;
4
(
2
):
226
-
238
.
18.
Liu
H
,
Sun
Q
,
Sun
Y
, et al
.
MELK and EZH2 cooperate to regulate medulloblastoma cancer stem-like cell proliferation and differentiation
.
Mol Cancer Res
.
2017
;
15
(
9
):
1275
-
1286
.
19.
Madej
T
,
Lanczycki
CJ
,
Zhang
D
, et al
.
MMDB and VAST+: tracking structural similarities between macromolecular complexes
.
Nucleic Acids Res
.
2014
;
42
(
Database issue
):
D297
-
D303
.
20.
Kumari
N
,
Jaynes
PW
,
Saei
A
,
Iyengar
PV
,
Richard
JLC
,
Eichhorn
PJA
.
The roles of ubiquitin modifying enzymes in neoplastic disease
.
Biochim Biophys Acta Rev Cancer
.
2017
;
1868
(
2
):
456
-
483
.
21.
Thrower
JS
,
Hoffman
L
,
Rechsteiner
M
,
Pickart
CM
.
Recognition of the polyubiquitin proteolytic signal
.
EMBO J
.
2000
;
19
(
1
):
94
-
102
.
22.
Tan
D
,
Phipps
C
,
Hwang
WY
, et al;
SGH651 Investigators
.
Panobinostat in combination with bortezomib in patients with relapsed or refractory peripheral T-cell lymphoma: an open-label, multicentre phase 2 trial
.
Lancet Haematol
.
2015
;
2
(
8
):
e326
-
e333
.
23.
Lee
J
,
Suh
C
,
Kang
HJ
, et al
.
Phase I study of proteasome inhibitor bortezomib plus CHOP in patients with advanced, aggressive T-cell or NK/T-cell lymphoma
.
Ann Oncol
.
2008
;
19
(
12
):
2079
-
2083
.
24.
Kim
SJ
,
Yoon
DH
,
Kang
HJ
, et al;
Consortium for Improving Survival of Lymphoma (CISL) investigators
.
Bortezomib in combination with CHOP as first-line treatment for patients with stage III/IV peripheral T-cell lymphomas: a multicentre, single-arm, phase 2 trial
.
Eur J Cancer
.
2012
;
48
(
17
):
3223
-
3231
.
25.
Rastgoo
N
,
Pourabdollah
M
,
Abdi
J
,
Reece
D
,
Chang
H
.
Dysregulation of EZH2/miR-138 axis contributes to drug resistance in multiple myeloma by downregulating RBPMS
.
Leukemia
.
2018
;
32
(
11
):
2471
-
2482
.
26.
Rizq
O
,
Mimura
N
,
Oshima
M
, et al
.
Dual inhibition of EZH2 and EZH1 sensitizes PRC2-dependent tumors to proteasome inhibition
.
Clin Cancer Res
.
2017
;
23
(
16
):
4817
-
4830
.
27.
Xu
K
,
Wu
ZJ
,
Groner
AC
, et al
.
EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent
.
Science
.
2012
;
338
(
6113
):
1465
-
1469
.
28.
Dick
LR
,
Fleming
PE
.
Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy
.
2010
;
15
(
5-6
):
243
-
249
.
29.
Cha
TL
,
Zhou
BP
,
Xia
W
, et al
.
Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3
.
Science
.
2005
;
310
(
5746
):
306
-
310
.
30.
Kim
E
,
Kim
M
,
Woo
DH
, et al
.
Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells
.
Cancer Cell
.
2013
;
23
(
6
):
839
-
852
.
31.
Feng
H
,
Yu
Z
,
Tian
Y
, et al
.
A CCRK-EZH2 epigenetic circuitry drives hepatocarcinogenesis and associates with tumor recurrence and poor survival of patients
.
J Hepatol
.
2015
;
62
(
5
):
1100
-
1111
.
32.
Kikuchi
J
,
Koyama
D
,
Wada
T
, et al
.
Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma
.
J Clin Invest
.
2015
;
125
(
12
):
4375
-
4390
.
33.
Chen
S
,
Bohrer
LR
,
Rai
AN
, et al
.
Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2
.
Nat Cell Biol
.
2010
;
12
(
11
):
1108
-
1114
.
34.
Wu
SC
,
Zhang
Y
.
Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of enhancer of zeste 2 (Ezh2) regulates its stability
.
J Biol Chem
.
2011
;
286
(
32
):
28511
-
28519
.
35.
Zeng
X
,
Chen
S
,
Huang
H
.
Phosphorylation of EZH2 by CDK1 and CDK2: a possible regulatory mechanism of transmission of the H3K27me3 epigenetic mark through cell divisions
.
Cell Cycle
.
2011
;
10
(
4
):
579
-
583
.
36.
Consalvi
S
,
Brancaccio
A
,
Dall’Agnese
A
,
Puri
PL
,
Palacios
D
.
Praja1 E3 ubiquitin ligase promotes skeletal myogenesis through degradation of EZH2 upon p38α activation
.
Nat Commun
.
2017
;
8
(
1
):
13956
.
37.
Sahasrabuddhe
AA
,
Chen
X
,
Chung
F
,
Velusamy
T
,
Lim
MS
,
Elenitoba-Johnson
KS
.
Oncogenic Y641 mutations in EZH2 prevent Jak2/β-TrCP-mediated degradation
.
Oncogene
.
2015
;
34
(
4
):
445
-
454
.
38.
Zhang
P
,
Xiao
Z
,
Wang
S
, et al
.
ZRANB1 is an EZH2 deubiquitinase and a potential therapeutic target in breast cancer
.
Cell Reports
.
2018
;
23
(
3
):
823
-
837
.
39.
Cao
Q
,
Wang
X
,
Zhao
M
, et al
.
The central role of EED in the orchestration of polycomb group complexes
.
Nat Commun
.
2014
;
5
(
1
):
3127
.
40.
Vinayagam
A
,
Stelzl
U
,
Foulle
R
, et al
.
A directed protein interaction network for investigating intracellular signal transduction
.
Sci Signal
.
2011
;
4
(
189
):
rs8
.
41.
Hein
MY
,
Hubner
NC
,
Poser
I
, et al
.
A human interactome in three quantitative dimensions organized by stoichiometries and abundances
.
Cell
.
2015
;
163
(
3
):
712
-
723
.
You do not currently have access to this content.