Key Points

  • HPA allele–specific HLA class I–negative MKs can be differentiated from CRISPR-edited human iPSCs.

  • Such cells can be stored frozen and thawed to use in whole-cell flow cytometric assays to detect anti-HPA-3a, -3b, and -9b alloantibodies.

Abstract

Human platelet membrane glycoprotein polymorphisms can be immunogenic in man and are frequently the cause of clinically important immune reactions responsible for disorders such as neonatal alloimmune thrombocytopenia. Platelets from individuals carrying rare polymorphisms are often difficult to obtain, making diagnostic testing and transfusion of matched platelets challenging. In addition, class I HLA antibodies frequently present in maternal sera interfere with the detection of platelet-reactive alloantibodies. Detection of alloantibodies to human platelet antigen 3 (HPA-3) and HPA-9 is especially challenging, in part because of the presence of cell type–specific glycans situated near the polymorphic amino acid that together form the alloepitope. To overcome these limitations, we generated a series of HLA class I–negative blood group O induced pluripotent stem cell (iPSC) lines that were gene edited to sequentially convert their endogenous HPA-3a alloantigenic epitope to HPA-3b, and HPA-9a to HPA-9b. Subjecting these cell lines, upon differentiation into CD41+/CD42b+ human megakaryocytes (MKs), to flow cytometric detection of suspected anti-HPA-3 and HPA-9 alloantisera revealed that the HPA-3a–positive MKs specifically reacted with HPA-3a patient sera, whereas the HPA-3b MKs lost reactivity with HPA-3a patient sera while acquiring reactivity to HPA-3b patient sera. Importantly, HPA-9b–expressing MKs specifically reacted with anti-HPA-9b–suspected patient samples that had been undetectable using conventional techniques. The provision of specialized iPSC-derived human MKs expressing intact homozygous glycoprotein alloantigens on the cell surface that carry the appropriate endogenous carbohydrate moieties should greatly enhance detection of clinically important and rare HPA-specific alloantibodies that, to date, have resisted detection using current methods.

REFERENCES

REFERENCES
1.
Curtis
BR
.
Recent progress in understanding the pathogenesis of fetal and neonatal alloimmune thrombocytopenia
.
Br J Haematol
.
2015
;
171
(
5
):
671
-
682
.
2.
Sullivan
MJ
,
Kuhlmann
R
,
Peterson
JA
,
Curtis
BR
.
Severe neonatal alloimmune thrombocytopenia caused by maternal sensitization against a new low-frequency alloantigen (Domb) located on platelet glycoprotein IIIa
.
Transfusion
.
2017
;
57
(
7
):
1847
-
1848
.
3.
Poles
A
,
Lucas
G
,
Green
F
, et al
.
Neonatal alloimmune thrombocytopenia due to a new alloantigen Bl(a) defined by an Asp458Gly substitution in GPIIIa
.
Transfusion
.
2019
;
59
(
1
):
396
-
404
.
4.
Wihadmadyatami
H
,
Heidinger
K
,
Röder
L
, et al
.
Alloantibody against new platelet alloantigen (Lap(a)) on glycoprotein IIb is responsible for a case of fetal and neonatal alloimmune thrombocytopenia
.
Transfusion
.
2015
;
55
(
12
):
2920
-
2929
.
5.
Santoso
S
,
Kiefel
V
,
Richter
IG
, et al
.
A functional platelet fibrinogen receptor with a deletion in the cysteine-rich repeat region of the beta(3) integrin: the Oe(a) alloantigen in neonatal alloimmune thrombocytopenia
.
Blood
.
2002
;
99
(
4
):
1205
-
1214
.
6.
Newman
PJ
,
McFarland
JG
,
Aster
RH
. The alloimmune thrombocytopenias. In:
Loscalzo
J
,
Schafer
AI
, eds.
Thrombosis and Hemorrhage
,
Philadelphia, PA
:
Lippincott Williams and Wilkins
;
2003
:
441
-
456
.
7.
Hod
E
,
Schwartz
J
.
Platelet transfusion refractoriness
.
Br J Haematol
.
2008
;
142
(
3
):
348
-
360
.
8.
Hayashi
T
,
Hirayama
F
.
Advances in alloimmune thrombocytopenia: perspectives on current concepts of human platelet antigens, antibody detection strategies, and genotyping
.
Blood Transfus
.
2015
;
13
(
3
):
380
-
390
.
9.
Menitove
JE
,
Pereira
J
,
Hoffman
R
,
Anderson
T
,
Fried
W
,
Aster
RH
.
Cyclic thrombocytopenia of apparent autoimmune etiology
.
Blood
.
1989
;
73
(
6
):
1561
-
1569
.
10.
Kiefel
V
,
Santoso
S
,
Weisheit
M
,
Müeller-Eckhardt
C
.
Monoclonal antibody-specific immobilization of platelet antigens (MAIPA): a new tool for the identification of platelet-reactive antibodies
.
Blood
.
1987
;
70
(
6
):
1722
-
1726
.
11.
Harrison
CR
,
Curtis
BR
,
McFarland
JG
,
Huff
RW
,
Aster
RH
.
Severe neonatal alloimmune thrombocytopenia caused by antibodies to human platelet antigen 3a (Baka) detectable only in whole platelet assays
.
Transfusion
.
2003
;
43
(
10
):
1398
-
1402
.
12.
Barba
P
,
Pallarés
P
,
Nogués
N
, et al
.
Post-transfusion purpura caused by anti-HPA-3a antibodies that are only detectable using whole platelets in the platelet immunofluorescence test
.
Transfus Med
.
2010
;
20
(
3
):
200
-
202
.
13.
von dem Borne
AE
,
von Riesz
E
,
Verheugt
FW
, et al
.
Baka, a new platelet-specific antigen involved in neonatal allo-immune thrombocytopenia
.
Vox Sang
.
1980
;
39
(
2
):
113
-
120
.
14.
van der Schoot
CE
,
Wester
M
,
Von Dem Borne
AE
,
Huisman
HG
.
Characterization of platelet-specific alloantigens by immunoblotting: localization of Zw and Bak antigens
.
Br J Haematol
.
1986
;
64
(
4
):
715
-
723
.
15.
Lyman
S
,
Aster
RH
,
Visentin
GP
,
Newman
PJ
.
Polymorphism of human platelet membrane glycoprotein IIb associated with the Baka/Bakb alloantigen system
.
Blood
.
1990
;
75
(
12
):
2343
-
2348
.
16.
Noris
P
,
Simsek
S
,
de Bruijne-Admiraal
LG
, et al
.
Max(a), a new low-frequency platelet-specific antigen localized on glycoprotein IIb, is associated with neonatal alloimmune thrombocytopenia
.
Blood
.
1995
;
86
(
3
):
1019
-
1026
.
17.
Lin
M
,
Shieh
SH
,
Liang
DC
,
Yang
TF
,
Shibata
Y
.
Neonatal alloimmune thrombocytopenia in Taiwan due to an antibody against a labile component of HPA-3a (Baka)
.
Vox Sang
.
1995
;
69
(
4
):
336
-
340
.
18.
Boehlen
F
,
Kaplan
C
,
de Moerloose
P
.
Severe neonatal alloimmune thrombocytopenia due to anti-HPA-3a
.
Vox Sang
.
1998
;
74
(
3
):
201
-
204
.
19.
Glade-Bender
J
,
McFarland
JG
,
Kaplan
C
,
Porcelijn
L
,
Bussel
JB
.
Anti-HPA-3A induces severe neonatal alloimmune thrombocytopenia
.
J Pediatr
.
2001
;
138
(
6
):
862
-
867
.
20.
Kataoka
S
,
Kobayashi
H
,
Chiba
K
, et al
.
Neonatal alloimmune thrombocytopenia due to an antibody against a labile component of human platelet antigen-3b (Bak b)
.
Transfus Med
.
2004
;
14
(
6
):
419
-
423
.
21.
Socher
I
,
Zwingel
C
,
Santoso
S
,
Kroll
H
.
Heterogeneity of HPA-3 alloantibodies: consequences for the diagnosis of alloimmune thrombocytopenic syndromes
.
Transfusion
.
2008
;
48
(
3
):
463
-
472
.
22.
Take
H
,
Tomiyama
Y
,
Shibata
Y
, et al
.
Demonstration of the heterogeneity of epitopes of the platelet-specific alloantigen, Baka
.
Br J Haematol
.
1990
;
76
(
3
):
395
-
400
.
23.
Djaffar
I
,
Vilette
D
,
Pidard
D
,
Wautier
JL
,
Rosa
JP
.
Human platelet antigen 3 (HPA-3): localization of the determinant of the alloantibody Lek(a) (HPA-3a) to the C-terminus of platelet glycoprotein IIb heavy chain and contribution of O-linked carbohydrates
.
Thromb Haemost
.
1993
;
69
(
5
):
485
-
489
.
24.
Calvete
JJ
,
Muñiz-Diaz
E
.
Localization of an O-glycosylation site in the alpha-subunit of the human platelet integrin GPIIb/IIIa involved in Baka (HPA-3a) alloantigen expression
.
FEBS Lett
.
1993
;
328
(
1-2
):
30
-
34
.
25.
Peterson
JA
,
Balthazor
SM
,
Curtis
BR
,
McFarland
JG
,
Aster
RH
.
Maternal alloimmunization against the rare platelet-specific antigen HPA-9b (Max a) is an important cause of neonatal alloimmune thrombocytopenia
.
Transfusion
.
2005
;
45
(
9
):
1487
-
1495
.
26.
Kaplan
C
,
Porcelijn
L
,
Vanlieferinghen
P
, et al
.
Anti-HPA-9bw (Maxa) fetomaternal alloimmunization, a clinically severe neonatal thrombocytopenia: difficulties in diagnosis and therapy and report on eight families
.
Transfusion
.
2005
;
45
(
11
):
1799
-
1803
.
27.
Peterson
JA
,
Gitter
M
,
Bougie
DW
, et al
.
Low-frequency human platelet antigens as triggers for neonatal alloimmune thrombocytopenia
.
Transfusion
.
2014
;
54
(
5
):
1286
-
1293
.
28.
Moreau
T
,
Evans
AL
,
Vasquez
L
, et al
.
Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming
.
Nat Commun
.
2016
;
7
(
1
):
11208
.
29.
Ito
Y
,
Nakamura
S
,
Sugimoto
N
, et al
.
Turbulence activates platelet biogenesis to enable clinical scale ex vivo production
.
Cell
.
2018
;
174
(
3
):
636
-
648.e18
.
30.
Zhang
N
,
Newman
PJ
.
Packaging functionally important plasma proteins into the α-granules of human-induced pluripotent stem cell-derived megakaryocytes
.
J Tissue Eng Regen Med
.
2019
;
13
(
2
):
244
-
252
.
31.
Mills
JA
,
Paluru
P
,
Weiss
MJ
,
Gadue
P
,
French
DL
. Hematopoietic differentiation of pluripotent stem cells in culture. In:
Walker
JM
, ed.
Methods in Molecular Biology
,
New York, NY
:
Springer Science+Business Media
;
2014
:
181
-
194
.
32.
Paluru
P
,
Hudock
KM
,
Cheng
X
, et al
.
The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells
.
Stem Cell Res (Amst)
.
2014
;
12
(
2
):
441
-
451
.
33.
King
KE
,
Kao
KJ
,
Bray
PF
, et al
.
The role of HLA antibodies in neonatal thrombocytopenia: a prospective study
.
Tissue Antigens
.
1996
;
47
(
3
):
206
-
211
.
34.
Feng
Q
,
Shabrani
N
,
Thon
JN
, et al
.
Scalable generation of universal platelets from human induced pluripotent stem cells
.
Stem Cell Reports
.
2014
;
3
(
5
):
817
-
831
.
35.
Börger
AK
,
Eicke
D
,
Wolf
C
, et al
.
Generation of HLA-universal iPSC-derived megakaryocytes and platelets for survival under refractoriness conditions
.
Mol Med
.
2016
;
22
:
274
-
285
.
36.
Zhang
JP
,
Li
XL
,
Li
GH
, et al
.
Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage
.
Genome Biol
.
2017
;
18
(
1
):
35
.
37.
Peterson
JA
,
McFarland
JG
,
Curtis
BR
,
Aster
RH
.
Neonatal alloimmune thrombocytopenia: pathogenesis, diagnosis and management
.
Br J Haematol
.
2013
;
161
(
1
):
3
-
14
.
38.
Wu
GG
,
Kaplan
C
,
Curtis
BR
,
Pearson
HA
.
Report on the 14th International Society of Blood Transfusion Platelet Immunology Workshop
.
Vox Sang
.
2010
;
99
(
4
):
375
-
381
.
39.
Sachs
UJ
,
Kiefel
V
,
Kroll
H
,
Bein
G
,
Santoso
S
.
Report on the 15th International Society of Blood Transfusion Platelet Immunology Workshop
.
Vox Sang
.
2012
;
103
(
4
):
343
-
351
.
40.
Goldberger
A
,
Kolodziej
M
,
Poncz
M
,
Bennett
JS
,
Newman
PJ
.
Effect of single amino acid substitutions on the formation of the PlA and Bak alloantigenic epitopes
.
Blood
.
1991
;
78
(
3
):
681
-
687
.
41.
Hayashi
T
,
Amakishi
E
,
Matsuyama
N
, et al
.
Establishment of a cell line panel as an alternative source of platelet antigens for a screening assay of anti-human platelet antibodies
.
Transfus Med
.
2011
;
21
(
3
):
199
-
204
.
42.
King
SL
,
Joshi
HJ
,
Schjoldager
KT
, et al
.
Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells
.
Blood Adv
.
2017
;
1
(
7
):
429
-
442
.
43.
Bennett
EP
,
Mandel
U
,
Clausen
H
,
Gerken
TA
,
Fritz
TA
,
Tabak
LA
.
Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family
.
Glycobiology
.
2012
;
22
(
6
):
736
-
756
.
You do not currently have access to this content.