Key Points

  • Conjugation of GSK3 inhibitor–loaded nanoparticles with donor cells enhances their proliferation kinetics post-IUHCT.

  • Resulting therapeutic levels of engraftment could allow single-step in utero treatment of congenital hematological disorders.

Abstract

Host cell competition is a major barrier to engraftment after in utero hematopoietic cell transplantation (IUHCT). Here we describe a cell-engineering strategy using glycogen synthase kinase-3 (GSK3) inhibitor–loaded nanoparticles conjugated to the surface of donor hematopoietic cells to enhance their proliferation kinetics and ability to compete against their fetal host equivalents. With this approach, we achieved remarkable levels of stable, long-term hematopoietic engraftment for up to 24 weeks post-IUHCT. We also show that the salutary effects of the nanoparticle-released GSK3 inhibitor are specific to donor progenitor/stem cells and achieved by a pseudoautocrine mechanism. These results establish that IUHCT of hematopoietic cells decorated with GSK3 inhibitor–loaded nanoparticles can produce therapeutic levels of long-term engraftment and could therefore allow single-step prenatal treatment of congenital hematological disorders.

REFERENCES

REFERENCES
1.
Loukogeorgakis
SP
,
Flake
AW
.
In utero stem cell and gene therapy: current status and future perspectives
.
Eur J Pediatr Surg
.
2014
;
24
(
3
):
237
-
245
.
2.
Kim
HB
,
Shaaban
AF
,
Milner
R
,
Fichter
C
,
Flake
AW
.
In utero bone marrow transplantation induces donor-specific tolerance by a combination of clonal deletion and clonal anergy
.
J Pediatr Surg
.
1999
;
34
(
5
):
726
-
729
,
discussion 729-730
.
3.
Boelig
MM
,
Kim
AG
,
Stratigis
JD
, et al
.
The intravenous route of injection optimizes engraftment and survival in the murine model of in utero hematopoietic cell transplantation
.
Biol Blood Marrow Transplant
.
2016
;
22
(
6
):
991
-
999
.
4.
Vrecenak
JD
,
Pearson
EG
,
Santore
MT
, et al
.
Stable long-term mixed chimerism achieved in a canine model of allogeneic in utero hematopoietic cell transplantation
.
Blood
.
2014
;
124
(
12
):
1987
-
1995
.
5.
Kim
HB
,
Shaaban
AF
,
Yang
EY
,
Liechty
KW
,
Flake
AW
.
Microchimerism and tolerance after in utero bone marrow transplantation in mice
.
J Surg Res
.
1998
;
77
(
1
):
1
-
5
.
6.
Peranteau
WH
,
Heaton
TE
,
Gu
YC
, et al
.
Haploidentical in utero hematopoietic cell transplantation improves phenotype and can induce tolerance for postnatal same-donor transplants in the canine leukocyte adhesion deficiency model
.
Biol Blood Marrow Transplant
.
2009
;
15
(
3
):
293
-
305
.
7.
Peranteau
WH
,
Hayashi
S
,
Hsieh
M
,
Shaaban
AF
,
Flake
AW
.
High-level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation
.
Blood
.
2002
;
100
(
6
):
2225
-
2234
.
8.
Frame
S
,
Cohen
P
.
GSK3 takes centre stage more than 20 years after its discovery
.
Biochem J
.
2001
;
359
(
Pt 1
):
1
-
16
.
9.
Yost
C
,
Torres
M
,
Miller
JR
,
Huang
E
,
Kimelman
D
,
Moon
RT
.
The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3
.
Genes Dev
.
1996
;
10
(
12
):
1443
-
1454
.
10.
Jia
J
,
Amanai
K
,
Wang
G
,
Tang
J
,
Wang
B
,
Jiang
J
.
Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus
.
Nature
.
2002
;
416
(
6880
):
548
-
552
.
11.
Foltz
DR
,
Santiago
MC
,
Berechid
BE
,
Nye
JS
.
Glycogen synthase kinase-3beta modulates notch signaling and stability
.
Curr Biol
.
2002
;
12
(
12
):
1006
-
1011
.
12.
Murdoch
B
,
Chadwick
K
,
Martin
M
, et al
.
Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo
.
Proc Natl Acad Sci USA
.
2003
;
100
(
6
):
3422
-
3427
.
13.
Reya
T
,
Duncan
AW
,
Ailles
L
, et al
.
A role for Wnt signalling in self-renewal of haematopoietic stem cells
.
Nature
.
2003
;
423
(
6938
):
409
-
414
.
14.
Bhardwaj
G
,
Murdoch
B
,
Wu
D
, et al
.
Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation
.
Nat Immunol
.
2001
;
2
(
2
):
172
-
180
.
15.
Karanu
FN
,
Murdoch
B
,
Gallacher
L
, et al
.
The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells
.
J Exp Med
.
2000
;
192
(
9
):
1365
-
1372
.
16.
Duncan
AW
,
Rattis
FM
,
DiMascio
LN
, et al
.
Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance
.
Nat Immunol
.
2005
;
6
(
3
):
314
-
322
.
17.
Ballin
A
,
Lehman
D
,
Sirota
P
,
Litvinjuk
U
,
Meytes
D
.
Increased number of peripheral blood CD34+ cells in lithium-treated patients
.
Br J Haematol
.
1998
;
100
(
1
):
219
-
221
.
18.
Boggs
DR
,
Joyce
RA
.
The hematopoietic effects of lithium
.
Semin Hematol
.
1983
;
20
(
2
):
129
-
138
.
19.
Joyce
RA
.
Sequential effects of lithium on haematopoiesis
.
Br J Haematol
.
1984
;
56
(
2
):
307
-
321
.
20.
Ricci
P
,
Bandini
G
,
Franchi
P
,
Motta
MR
,
Visani
G
,
Calamandrei
G
.
Haematological effects of lithium carbonate: a study in 56 psychiatric patients
.
Haematologica
.
1981
;
66
(
5
):
627
-
633
.
21.
Huang
J
,
Zhang
Y
,
Bersenev
A
, et al
.
Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice
.
J Clin Invest
.
2009
;
119
(
12
):
3519
-
3529
.
22.
Klein
PS
,
Melton
DA
.
A molecular mechanism for the effect of lithium on development
.
Proc Natl Acad Sci USA
.
1996
;
93
(
16
):
8455
-
8459
.
23.
Hedgepeth
CM
,
Conrad
LJ
,
Zhang
J
,
Huang
HC
,
Lee
VM
,
Klein
PS
.
Activation of the Wnt signaling pathway: a molecular mechanism for lithium action
.
Dev Biol
.
1997
;
185
(
1
):
82
-
91
.
24.
Stambolic
V
,
Ruel
L
,
Woodgett
JR
.
Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells
.
Curr Biol
.
1996
;
6
(
12
):
1664
-
1668
.
25.
Phiel
CJ
,
Klein
PS
.
Molecular targets of lithium action
.
Annu Rev Pharmacol Toxicol
.
2001
;
41
:
789
-
813
.
26.
Trowbridge
JJ
,
Xenocostas
A
,
Moon
RT
,
Bhatia
M
.
Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation
.
Nat Med
.
2006
;
12
(
1
):
89
-
98
.
27.
Stephan
MT
,
Moon
JJ
,
Um
SH
,
Bershteyn
A
,
Irvine
DJ
.
Therapeutic cell engineering with surface-conjugated synthetic nanoparticles
.
Nat Med
.
2010
;
16
(
9
):
1035
-
1041
.
28.
Stephan
MT
,
Stephan
SB
,
Bak
P
,
Chen
J
,
Irvine
DJ
.
Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles
.
Biomaterials
.
2012
;
33
(
23
):
5776
-
5787
.
29.
Jones
RB
,
Mueller
S
,
Kumari
S
, et al
.
Antigen recognition-triggered drug delivery mediated by nanocapsule-functionalized cytotoxic T-cells
.
Biomaterials
.
2017
;
117
:
44
-
53
.
30.
Merianos
DJ
,
Tiblad
E
,
Santore
MT
, et al
.
Maternal alloantibodies induce a postnatal immune response that limits engraftment following in utero hematopoietic cell transplantation in mice
.
J Clin Invest
.
2009
;
119
(
9
):
2590
-
2600
.
31.
Harrison
DE
.
Competitive repopulation: a new assay for long-term stem cell functional capacity
.
Blood
.
1980
;
55
(
1
):
77
-
81
.
32.
Hsieh
MM
,
Fitzhugh
CD
,
Tisdale
JF
.
Allogeneic hematopoietic stem cell transplantation for sickle cell disease: the time is now
.
Blood
.
2011
;
118
(
5
):
1197
-
1207
.
33.
Andreani
M
,
Testi
M
,
Battarra
M
,
Lucarelli
G
.
Split chimerism between nucleated and red blood cells after bone marrow transplantation for haemoglobinopathies
.
Chimerism
.
2011
;
2
(
1
):
21
-
22
.
34.
Walters
MC
,
Patience
M
,
Leisenring
W
, et al;
Multicenter Investigation of Bone Marrow Transplantation for Sickle Cell Disease
.
Stable mixed hematopoietic chimerism after bone marrow transplantation for sickle cell anemia
.
Biol Blood Marrow Transplant
.
2001
;
7
(
12
):
665
-
673
.
35.
Walters
MC
,
Patience
M
,
Leisenring
W
, et al
.
Bone marrow transplantation for sickle cell disease
.
N Engl J Med
.
1996
;
335
(
6
):
369
-
376
.
36.
Peranteau
WH
,
Hayashi
S
,
Abdulmalik
O
, et al
.
Correction of murine hemoglobinopathies by prenatal tolerance induction and postnatal nonmyeloablative allogeneic BM transplants
.
Blood
.
2015
;
126
(
10
):
1245
-
1254
.
37.
Nijagal
A
,
Derderian
C
,
Le
T
, et al
.
Direct and indirect antigen presentation lead to deletion of donor-specific T cells after in utero hematopoietic cell transplantation in mice
.
Blood
.
2013
;
121
(
22
):
4595
-
4602
.
38.
Peranteau
WH
,
Endo
M
,
Adibe
OO
,
Flake
AW
.
Evidence for an immune barrier after in utero hematopoietic-cell transplantation
.
Blood
.
2007
;
109
(
3
):
1331
-
1333
.
39.
Nijagal
A
,
Wegorzewska
M
,
Jarvis
E
,
Le
T
,
Tang
Q
,
MacKenzie
TC
.
Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice
.
J Clin Invest
.
2011
;
121
(
2
):
582
-
592
.
40.
Lovell
KL
,
Kraemer
SA
,
Leipprandt
JR
, et al
.
In utero hematopoietic stem cell transplantation: a caprine model for prenatal therapy in inherited metabolic diseases
.
Fetal Diagn Ther
.
2001
;
16
(
1
):
13
-
17
.
41.
Harrison
MR
,
Slotnick
RN
,
Crombleholme
TM
,
Golbus
MS
,
Tarantal
AF
,
Zanjani
ED
.
In-utero transplantation of fetal liver haemopoietic stem cells in monkeys
.
Lancet
.
1989
;
2
(
8677
):
1425
-
1427
.
42.
Fleischman
RA
,
Mintz
B
.
Prevention of genetic anemias in mice by microinjection of normal hematopoietic stem cells into the fetal placenta
.
Proc Natl Acad Sci USA
.
1979
;
76
(
11
):
5736
-
5740
.
43.
Blazar
BR
,
Taylor
PA
,
Vallera
DA
.
In utero transfer of adult bone marrow cells into recipients with severe combined immunodeficiency disorder yields lymphoid progeny with T- and B-cell functional capabilities
.
Blood
.
1995
;
86
(
11
):
4353
-
4366
.
44.
Andreani
M
,
Nesci
S
,
Lucarelli
G
, et al
.
Long-term survival of ex-thalassemic patients with persistent mixed chimerism after bone marrow transplantation
.
Bone Marrow Transplant
.
2000
;
25
(
4
):
401
-
404
.
45.
Peranteau
WH
,
Hayashi
S
,
Kim
HB
,
Shaaban
AF
,
Flake
AW
.
In utero hematopoietic cell transplantation: what are the important questions?
Fetal Diagn Ther
.
2004
;
19
(
1
):
9
-
12
.
46.
Peranteau
WH
,
Endo
M
,
Adibe
OO
,
Merchant
A
,
Zoltick
PW
,
Flake
AW
.
CD26 inhibition enhances allogeneic donor-cell homing and engraftment after in utero hematopoietic-cell transplantation
.
Blood
.
2006
;
108
(
13
):
4268
-
4274
.
47.
Kim
AG
,
Vrecenak
JD
,
Boelig
MM
, et al
.
Enhanced in utero allogeneic engraftment in mice after mobilizing fetal HSCs by α4β1/7 inhibition
.
Blood
.
2016
;
128
(
20
):
2457
-
2461
.
48.
Witt
RG
,
Wang
B
,
Nguyen
QH
,
Eikani
C
,
Mattis
AN
,
MacKenzie
TC
.
Depletion of murine fetal hematopoietic stem cells with c-Kit receptor and CD47 blockade improves neonatal engraftment
.
Blood Adv
.
2018
;
2
(
24
):
3602
-
3607
.
49.
Patorno
E
,
Huybrechts
KF
,
Hernandez-Diaz
S
.
Lithium Use in Pregnancy and the Risk of Cardiac Malformations
.
N Engl J Med
.
2017
;
377
(
9
):
893
-
894
.
50.
Huang
J
,
Nguyen-McCarty
M
,
Hexner
EO
,
Danet-Desnoyers
G
,
Klein
PS
.
Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways
.
Nat Med
.
2012
;
18
(
12
):
1778
-
1785
.
51.
Sauvageau
G
,
Iscove
NN
,
Humphries
RK
.
In vitro and in vivo expansion of hematopoietic stem cells
.
Oncogene
.
2004
;
23
(
43
):
7223
-
7232
.
52.
Piacibello
W
,
Sanavio
F
,
Severino
A
, et al
.
Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells
.
Blood
.
1999
;
93
(
11
):
3736
-
3749
.
53.
Zhang
CC
,
Kaba
M
,
Ge
G
, et al
.
Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells
.
Nat Med
.
2006
;
12
(
2
):
240
-
245
.
You do not currently have access to this content.