Abstract

Patients with cancer have an increased risk of thromboembolism, which is the second leading cause of death in these patients. Several mechanisms of the prothrombotic state in these patients have been proposed. Among them are a platelet activation receptor, C-type lectin-like receptor 2 (CLEC-2), and its endogenous ligand podoplanin, which are the focus of this review. CLEC-2 is almost specifically expressed in platelets/megakaryocytes in humans. A membrane protein, podoplanin is expressed in certain types of cancer cells, including squamous cell carcinoma, brain tumor, and osteosarcoma, in addition to several normal tissues, including kidney podocytes and lymphatic endothelial cells but not vascular endothelial cells. In the bloodstream, podoplanin induces platelet activation by binding to CLEC-2 and facilitates hematogenous cancer metastasis and cancer-associated thrombosis. In an experimental lung metastasis model, the pharmacological depletion of CLEC-2 from platelets in mice resulted in a marked reduction of lung metastasis of podoplanin-expressing B16F10 cells. Control mice with B16F10 orthotopically inoculated in the back skin showed massive thrombus formation in the lungs, but the cancer-associated thrombus formation in CLEC-2–depleted mice was significantly inhibited, suggesting that CLEC-2–podoplanin interaction stimulates cancer-associated thrombosis. Thromboinflammation induced ectopic podoplanin expression in vascular endothelial cells or macrophages, which may also contribute to cancer-associated thrombosis. CLEC-2 depletion in cancer-bearing mice resulted in not only reduced cancer-associated thrombosis but also reduced levels of plasma inflammatory cytokines, anemia, and sarcopenia, suggesting that cancer-associated thrombosis may cause thromboinflammation and cancer cachexia. Blocking CLEC-2–podoplanin interaction may be a novel therapeutic strategy in patients with podoplanin-expressing cancer.

References

References
1.
Hisada
Y
,
Mackman
N
.
Cancer-associated pathways and biomarkers of venous thrombosis
.
Blood
.
2017
;
130
(
13
):
1499
-
1506
.
2.
Mukai
M
,
Oka
T
.
Mechanism and management of cancer-associated thrombosis
.
J Cardiol
.
2018
;
72
(
2
):
89
-
93
.
3.
Abdol Razak
NB
,
Jones
G
,
Bhandari
M
,
Berndt
MC
,
Metharom
P
.
Cancer-associated thrombosis: an overview of mechanisms, risk factors, and treatment
.
Cancers (Basel)
.
2018
;
10
(
10
):
380
.
4.
Wahrenbrock
M
,
Borsig
L
,
Le
D
,
Varki
N
,
Varki
A
.
Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas
.
J Clin Invest
.
2003
;
112
(
6
):
853
-
862
.
5.
Shao
B
,
Wahrenbrock
MG
,
Yao
L
, et al
.
Carcinoma mucins trigger reciprocal activation of platelets and neutrophils in a murine model of Trousseau syndrome
.
Blood
.
2011
;
118
(
15
):
4015
-
4023
.
6.
Mauracher
LM
,
Posch
F
,
Martinod
K
, et al
.
Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients
.
J Thromb Haemost
.
2018
;
16
(
3
):
508
-
518
.
7.
Grilz
E
,
Mauracher
LM
,
Posch
F
, et al
.
Citrullinated histone H3, a biomarker for neutrophil extracellular trap formation, predicts the risk of mortality in patients with cancer
.
Br J Haematol
.
2019
;
186
(
2
):
311
-
320
.
8.
Khorana
AA
,
Francis
CW
,
Culakova
E
,
Kuderer
NM
,
Lyman
GH
.
Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy
.
J Thromb Haemost
.
2007
;
5
(
3
):
632
-
634
.
9.
Suzuki-Inoue
K
.
Roles of the CLEC-2–podoplanin interaction in tumor progression
.
Platelets
.
2018
;
29
(
8
):
786
-
792
.
10.
Guglietta
S
,
Rescigno
M
.
Hypercoagulation and complement: connected players in tumor development and metastases
.
Semin Immunol
.
2016
;
28
(
6
):
578
-
586
.
11.
Frere
C
,
Benzidia
I
,
Marjanovic
Z
,
Farge
D
.
Recent advances in the management of cancer-associated thrombosis: new hopes but new challenges
.
Cancers (Basel)
.
2019
;
11
(
1
):
71
.
12.
Raskob
GE
,
van Es
N
,
Verhamme
P
, et al;
Hokusai VTE Cancer Investigators
.
Edoxaban for the treatment of cancer-associated venous thromboembolism
.
N Engl J Med
.
2018
;
378
(
7
):
615
-
624
.
13.
Young
AM
,
Marshall
A
,
Thirlwall
J
, et al
.
Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D)
.
J Clin Oncol
.
2018
;
36
(
20
):
2017
-
2023
.
14.
Carrier
M
,
Abou-Nassar
K
,
Mallick
R
, et al;
AVERT Investigators
.
Apixaban to prevent venous thromboembolism in patients with cancer
.
N Engl J Med
.
2019
;
380
(
8
):
711
-
719
.
15.
Khorana
AA
,
Soff
GA
,
Kakkar
AK
, et al;
CASSINI Investigators
.
Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer
.
N Engl J Med
.
2019
;
380
(
8
):
720
-
728
.
16.
Chubak
J
,
Whitlock
EP
,
Williams
SB
, et al
.
Aspirin for the prevention of cancer incidence and mortality: systematic evidence reviews for the U.S. Preventive Services Task Force
.
Ann Intern Med
.
2016
;
164
(
12
):
814
-
825
.
17.
Drew
DA
,
Cao
Y
,
Chan
AT
.
Aspirin and colorectal cancer: the promise of precision chemoprevention
.
Nat Rev Cancer
.
2016
;
16
(
3
):
173
-
186
.
18.
Navi
BB
,
Reiner
AS
,
Kamel
H
, et al
.
Arterial thromboembolic events preceding the diagnosis of cancer in older persons
.
Blood
.
2019
;
133
(
8
):
781
-
789
.
19.
Takemoto
A
,
Miyata
K
,
Fujita
N
.
Platelet-activating factor podoplanin: from discovery to drug development
.
Cancer Metastasis Rev
.
2017
;
36
(
2
):
225
-
234
.
20.
Suzuki-Inoue
K
,
Kato
Y
,
Inoue
O
, et al
.
Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells
.
J Biol Chem
.
2007
;
282
(
36
):
25993
-
26001
.
21.
Suzuki-Inoue
K
,
Osada
M
,
Ozaki
Y
.
Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood
.
J Thromb Haemost
.
2017
;
15
(
2
):
219
-
229
.
22.
Suzuki-Inoue
K
,
Fuller
GL
,
García
A
, et al
.
A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2
.
Blood
.
2006
;
107
(
2
):
542
-
549
.
23.
Lowe
KL
,
Navarro-Núñez
L
,
Bénézech
C
, et al
.
The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state
.
Eur J Immunol
.
2015
;
45
(
9
):
2484
-
2493
.
24.
Kato
Y
,
Kaneko
MK
,
Kunita
A
, et al
.
Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2
.
Cancer Sci
.
2008
;
99
(
1
):
54
-
61
.
25.
Nagae
M
,
Morita-Matsumoto
K
,
Kato
M
,
Kaneko
MK
,
Kato
Y
,
Yamaguchi
Y
.
A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin
.
Structure
.
2014
;
22
(
12
):
1711
-
1721
.
26.
Osada
M
,
Inoue
O
,
Ding
G
, et al
.
Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells
.
J Biol Chem
.
2012
;
287
(
26
):
22241
-
22252
.
27.
Pollitt
AY
,
Poulter
NS
,
Gitz
E
, et al
.
Syk and Src family kinases regulate C-type lectin receptor 2 (CLEC-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells
.
J Biol Chem
.
2014
;
289
(
52
):
35695
-
35710
.
28.
Acton
SE
,
Farrugia
AJ
,
Astarita
JL
, et al
.
Dendritic cells control fibroblastic reticular network tension and lymph node expansion
.
Nature
.
2014
;
514
(
7523
):
498
-
502
.
29.
Astarita
JL
,
Cremasco
V
,
Fu
J
, et al
.
The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture
.
Nat Immunol
.
2015
;
16
(
1
):
75
-
84
.
30.
Shirai
T
,
Inoue
O
,
Tamura
S
, et al
.
C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice
.
J Thromb Haemost
.
2017
;
15
(
3
):
513
-
525
.
31.
Riedl
J
,
Preusser
M
,
Nazari
PM
, et al
.
Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism
.
Blood
.
2017
;
129
(
13
):
1831
-
1839
.
32.
Zwicker
JI
.
Risking thromboembolism: podoplanin and glioma
.
Blood
.
2017
;
129
(
13
):
1742
-
1743
.
33.
Payne
H
,
Ponomaryov
T
,
Watson
SP
,
Brill
A
.
Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis
.
Blood
.
2017
;
129
(
14
):
2013
-
2020
.
34.
Suzuki-Inoue
K
.
CLEC-2/podoplanin and thromboinflammation
.
Blood
.
2017
;
129
(
14
):
1896
-
1898
.
35.
Hitchcock
JR
,
Cook
CN
,
Bobat
S
, et al
.
Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets
.
J Clin Invest
.
2015
;
125
(
12
):
4429
-
4446
.
36.
Tammela
T
,
Alitalo
K
.
Lymphangiogenesis: molecular mechanisms and future promise
.
Cell
.
2010
;
140
(
4
):
460
-
476
.
37.
Astarita
JL
,
Acton
SE
,
Turley
SJ
.
Podoplanin: emerging functions in development, the immune system, and cancer
.
Front Immunol
.
2012
;
3
:
283
.
38.
Peterziel
H
,
Müller
J
,
Danner
A
, et al
.
Expression of podoplanin in human astrocytic brain tumors is controlled by the PI3K-AKT-AP-1 signaling pathway and promoter methylation
.
Neuro Oncol
.
2012
;
14
(
4
):
426
-
439
.
39.
Kunita
A
,
Kashima
TG
,
Ohazama
A
,
Grigoriadis
AE
,
Fukayama
M
.
Podoplanin is regulated by AP-1 and promotes platelet aggregation and cell migration in osteosarcoma
.
Am J Pathol
.
2011
;
179
(
2
):
1041
-
1049
.
40.
Durchdewald
M
,
Guinea-Viniegra
J
,
Haag
D
, et al
.
Podoplanin is a novel Fos target gene in skin carcinogenesis
.
Cancer Res
.
2008
;
68
(
17
):
6877
-
6883
.
41.
Kunita
A
,
Baeriswyl
V
,
Meda
C
, et al
.
Inflammatory cytokines induce podoplanin expression at the tumor invasive front
.
Am J Pathol
.
2018
;
188
(
5
):
1276
-
1288
.
42.
Volz
J
,
Mammadova-Bach
E
,
Gil-Pulido
J
, et al
.
Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice
.
Blood
.
2019
;
133
(
25
):
2696
-
2706
.
43.
Boulaftali
Y
,
Hess
PR
,
Getz
TM
, et al
.
Platelet ITAM signaling is critical for vascular integrity in inflammation
.
J Clin Invest
.
2013
;
123
(
2
):
908
-
916
.
44.
Kato
Y
,
Kaneko
MK
.
A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin
.
Sci Rep
.
2014
;
4
:
5924
.
45.
Bender
M
,
May
F
,
Lorenz
V
, et al
.
Combined in vivo depletion of glycoprotein VI and C-type lectin-like receptor 2 severely compromises hemostasis and abrogates arterial thrombosis in mice
.
Arterioscler Thromb Vasc Biol
.
2013
;
33
(
5
):
926
-
934
.
46.
Suzuki-Inoue
K
,
Inoue
O
,
Ding
G
, et al
.
Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets
.
J Biol Chem
.
2010
;
285
(
32
):
24494
-
24507
.
47.
Chang
YW
,
Hsieh
PW
,
Chang
YT
, et al
.
Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis
.
Oncotarget
.
2015
;
6
(
40
):
42733
-
42748
.
48.
Tsukiji
N
,
Osada
M
,
Sasaki
T
, et al
.
Cobalt hematoporphyrin inhibits CLEC-2-podoplanin interaction, tumor metastasis, and arterial/venous thrombosis in mice
.
Blood Adv
.
2018
;
2
(
17
):
2214
-
2225
.
49.
Sasaki
T
,
Shirai
T
,
Tsukiji
N
, et al
.
Functional characterization of recombinant snake venom rhodocytin: rhodocytin mutant blocks CLEC‐2/podoplanin‐dependent platelet aggregation and lung metastasis
.
J Thromb Haemost
.
2018
;
16
(
5
):
960
-
972
.
You do not currently have access to this content.

Comments

0 Comments