Abstract

As essential components of hemoglobin, iron and heme play central roles in terminal erythropoiesis. The impairment of this process in iron/heme deficiency results in microcytic hypochromic anemia, the most prevalent anemia globally. Heme-regulated eIF2α kinase, also known as heme-regulated inhibitor (HRI), is a key heme-binding protein that senses intracellular heme concentrations to balance globin protein synthesis with the amount of heme available for hemoglobin production. HRI is activated during heme deficiency to phosphorylate eIF2α (eIF2αP), which simultaneously inhibits the translation of globin messenger RNAs (mRNAs) and selectively enhances the translation of activating transcription factor 4 (ATF4) mRNA to induce stress response genes. This coordinated translational regulation is a universal hallmark across the eIF2α kinase family under various stress conditions and is termed the integrated stress response (ISR). Inhibition of general protein synthesis by HRI-eIF2αP in erythroblasts is necessary to prevent proteotoxicity and maintain protein homeostasis in the cytoplasm and mitochondria. Additionally, the HRI–eIF2αP–ATF4 pathway represses mechanistic target of rapamycin complex 1 (mTORC1) signaling, specifically in the erythroid lineage as a feedback mechanism of erythropoietin-stimulated erythropoiesis during iron/heme deficiency. Furthermore, ATF4 target genes are most highly activated during iron deficiency to maintain mitochondrial function and redox homeostasis, as well as to enable erythroid differentiation. Thus, heme and translation regulate erythropoiesis through 2 key signaling pathways, ISR and mTORC1, which are coordinated by HRI to circumvent ineffective erythropoiesis (IE). HRI-ISR is also activated to reduce the severity of β-thalassemia intermedia in the Hbbth1/th1 murine model. Recently, HRI has been implicated in the regulation of human fetal hemoglobin production. Therefore, HRI-ISR has emerged as a potential therapeutic target for hemoglobinopathies.

REFERENCES

REFERENCES
1.
Camaschella
C
.
Iron deficiency
.
Blood
.
2019
;
133
(
1
):
30
-
39
.
2.
Chung
J
,
Chen
C
,
Paw
BH
.
Heme metabolism and erythropoiesis
.
Curr Opin Hematol
.
2012
;
19
(
3
):
156
-
162
.
3.
Chefalo
PJ
,
Oh
J
,
Rafie-Kolpin
M
,
Kan
B
,
Chen
J-J
.
Heme-regulated eIF-2α kinase purifies as a hemoprotein
.
Eur J Biochem
.
1998
;
258
(
2
):
820
-
830
.
4.
Rafie-Kolpin
M
,
Chefalo
PJ
,
Hussain
Z
, et al
.
Two heme-binding domains of heme-regulated eukaryotic initiation factor-2α kinase. N-terminus and kinase insertion
.
J Biol Chem
.
2000
;
275
:
5171
-
5178
.
5.
Bauer
BN
,
Rafie-Kolpin
M
,
Lu
L
,
Han
A
,
Chen
JJ
.
Multiple autophosphorylation is essential for the formation of the active and stable homodimer of heme-regulated eIF2α kinase
.
Biochemistry
.
2001
;
40
(
38
):
11543
-
11551
.
6.
Crosby
JS
,
Lee
K
,
London
IM
,
Chen
J-J
.
Erythroid expression of the heme-regulated eIF-2 α kinase
.
Mol Cell Biol
.
1994
;
14
(
6
):
3906
-
3914
.
7.
Chen
JJ
. Heme-regulated eIF-2α kinase. In:
Sonenberg
N
,
Hershey
JWB
,
Mathews
MB
, eds.
Translational Control of Gene Expression
,
Cold Spring Harbor, NY
:
Cold Spring Harbor Laboratory Press
;
2000
:
529
-
546
.
8.
Chen
JJ
.
Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias
.
Blood
.
2007
;
109
(
7
):
2693
-
2699
.
9.
Chen
JJ
.
Translational control by heme-regulated eIF2α kinase during erythropoiesis
.
Curr Opin Hematol
.
2014
;
21
(
3
):
172
-
178
.
10.
Pakos-Zebrucka
K
,
Koryga
I
,
Mnich
K
,
Ljujic
M
,
Samali
A
,
Gorman
AM
.
The integrated stress response
.
EMBO Rep
.
2016
;
17
(
10
):
1374
-
1395
.
11.
Crosby
JS
,
Chefalo
PJ
,
Yeh
I
, et al
.
Regulation of hemoglobin synthesis and proliferation of differentiating erythroid cells by heme-regulated eIF-2alpha kinase
.
Blood
.
2000
;
96
(
9
):
3241
-
3248
.
12.
Han
AP
,
Yu
C
,
Lu
L
, et al
.
Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency
.
EMBO J
.
2001
;
20
(
23
):
6909
-
6918
.
13.
Han
AP
,
Fleming
MD
,
Chen
JJ
.
Heme-regulated eIF2alpha kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and beta-thalassemia
.
J Clin Invest
.
2005
;
115
(
6
):
1562
-
1570
.
14.
Suragani
RN
,
Zachariah
RS
,
Velazquez
JG
, et al
.
Heme-regulated eIF2α kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis
.
Blood
.
2012
;
119
(
22
):
5276
-
5284
.
15.
Libani
IV
,
Guy
EC
,
Melchiori
L
, et al
.
Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia
.
Blood
.
2008
;
112
(
3
):
875
-
885
.
16.
Sankaran
VG
,
Orkin
SH
,
Walkley
CR
.
Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis
.
Genes Dev
.
2008
;
22
(
4
):
463
-
475
.
17.
Spike
BT
,
Dirlam
A
,
Dibling
BC
, et al
.
The Rb tumor suppressor is required for stress erythropoiesis
.
EMBO J
.
2004
;
23
(
21
):
4319
-
4329
.
18.
Socolovsky
M
,
Nam
H
,
Fleming
MD
,
Haase
VH
,
Brugnara
C
,
Lodish
HF
.
Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts
.
Blood
.
2001
;
98
(
12
):
3261
-
3273
.
19.
Erslev
AJ
.
Clinical erythrokinetics: a critical review
.
Blood Rev
.
1997
;
11
(
3
):
160
-
167
.
20.
Bouscary
D
,
Pene
F
,
Claessens
YE
, et al
.
Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation
.
Blood
.
2003
;
101
(
9
):
3436
-
3443
.
21.
Thoreen
CC
,
Chantranupong
L
,
Keys
HR
,
Wang
T
,
Gray
NS
,
Sabatini
DM
.
A unifying model for mTORC1-mediated regulation of mRNA translation
.
Nature
.
2012
;
485
(
7396
):
109
-
113
.
22.
Adlung
L
,
Kar
S
,
Wagner
MC
, et al
.
Protein abundance of AKT and ERK pathway components governs cell type-specific regulation of proliferation
.
Mol Syst Biol
.
2017
;
13
(
1
):
904
.
23.
Goodnough
LT
.
Erythropoietin and iron-restricted erythropoiesis
.
Exp Hematol
.
2007
;
35
(
4 suppl 1
):
167
-
172
.
24.
Ghaffari
S
.
Oxidative stress in the regulation of normal and neoplastic hematopoiesis
.
Antioxid Redox Signal
.
2008
;
10
(
11
):
1923
-
1940
.
25.
Lu
L
,
Han
AP
,
Chen
JJ
.
Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses
.
Mol Cell Biol
.
2001
;
21
(
23
):
7971
-
7980
.
26.
McEwen
E
,
Kedersha
N
,
Song
B
, et al
.
Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure
.
J Biol Chem
.
2005
;
280
(
17
):
16925
-
16933
.
27.
Uma
S
,
Thulasiraman
V
,
Matts
RL
.
Dual role for Hsc70 in the biogenesis and regulation of the heme-regulated kinase of the alpha subunit of eukaryotic translation initiation factor 2
.
Mol Cell Biol
.
1999
;
19
(
9
):
5861
-
5871
.
28.
Rivella
S
.
Ineffective erythropoiesis and thalassemias
.
Curr Opin Hematol
.
2009
;
16
(
3
):
187
-
194
.
29.
Kraus
AP
,
Koch
B
,
Burckett
L
.
Two families showing interaction of haemoglobin C or thalassaemia with high foetal haemoglobin in adults
.
BMJ
.
1961
;
1
(
5237
):
1434
-
1436
.
30.
Conley
CL
,
Weatherall
DJ
,
Richardson
SN
,
Shepard
MK
,
Charache
S
.
Hereditary persistence of fetal hemoglobin: a study of 79 affected persons in 15 Negro families in Baltimore
.
Blood
.
1963
;
21
:
261
-
281
.
31.
Sankaran
VG
,
Orkin
SH
.
The switch from fetal to adult hemoglobin
.
Cold Spring Harb Perspect Med
.
2013
;
3
(
1
):
a011643
.
32.
Hahn
CK
,
Lowrey
CH
.
Eukaryotic initiation factor 2α phosphorylation mediates fetal hemoglobin induction through a post-transcriptional mechanism
.
Blood
.
2013
;
122
(
4
):
477
-
485
.
33.
Hahn
CK
,
Lowrey
CH
.
Induction of fetal hemoglobin through enhanced translation efficiency of γ-globin mRNA
.
Blood
.
2014
;
124
(
17
):
2730
-
2734
.
34.
Grevet
JD
,
Lan
X
,
Hamagami
N
, et al
.
Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells
.
Science
.
2018
;
361
(
6399
):
285
-
290
.
35.
Kerenyi
MA
,
Orkin
SH
.
Networking erythropoiesis
.
J Exp Med
.
2010
;
207
(
12
):
2537
-
2541
.
36.
An
X
,
Schulz
VP
,
Li
J
, et al
.
Global transcriptome analyses of human and murine terminal erythroid differentiation
.
Blood
.
2014
;
123
(
22
):
3466
-
3477
.
37.
Mills
EW
,
Wangen
J
,
Green
R
,
Ingolia
NT
.
Dynamic regulation of a ribosome rescue pathway in erythroid cells and platelets
.
Cell Reports
.
2016
;
17
(
1
):
1
-
10
.
38.
Khajuria
RK
,
Munschauer
M
,
Ulirsch
JC
, et al
.
Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis
.
Cell
.
2018
;
173
(
1
):
90
-
103.e19
.
39.
Harding
HP
,
Zhang
Y
,
Zeng
H
, et al
.
An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
.
Mol Cell
.
2003
;
11
(
3
):
619
-
633
.
40.
Walter
P
,
Ron
D
.
The unfolded protein response: from stress pathway to homeostatic regulation
.
Science
.
2011
;
334
(
6059
):
1081
-
1086
.
41.
Pavitt
GD
,
Ron
D
.
New insights into translational regulation in the endoplasmic reticulum unfolded protein response
.
Cold Spring Harb Perspect Biol
.
2012
;
4
(
6
): pii:
a012278
.
42.
Harding
HP
,
Zhang
Y
,
Ron
D
.
Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
.
Nature
.
1999
;
397
(
6716
):
271
-
274
.
43.
Harding
HP
,
Novoa
I
,
Zhang
Y
, et al
.
Regulated translation initiation controls stress-induced gene expression in mammalian cells
.
Mol Cell
.
2000
;
6
(
5
):
1099
-
1108
.
44.
Liu
S
,
Bhattacharya
S
,
Han
A
, et al
.
Haem-regulated eIF2alpha kinase is necessary for adaptive gene expression in erythroid precursors under the stress of iron deficiency
.
Br J Haematol
.
2008
;
143
(
1
):
129
-
137
.
45.
Kingsley
PD
,
Greenfest-Allen
E
,
Frame
JM
, et al
.
Ontogeny of erythroid gene expression
.
Blood
.
2013
;
121
(
6
):
e5
-
e13
.
46.
Zhang
S
,
Macias-Garcia
A
,
Ulirsch
JC
, et al
.
HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis
.
eLife
.
2019
;
8
pii:
e46976
.
47.
Ron
D
,
Harding
HP
. PERK and translational control by stress in endoplasmic reticulum. In:
Sonenberg
N
,
Hershey
JWB
,
Mathews
MB
, eds.
Translational Control of Gene Expression
,
Cold Spring Harbor, NY
:
Cold Spring Harbor Laboratory Press
;
2000
:
547
-
560
.
48.
Kaufman
RJ
. Double-stranded RNA-activated protein kinase PKR. In:
Sonenberg
N
,
Hershey
JWB
,
Mathews
MB
, eds.
Translational Control of Gene Expression
,
Cold Spring Harbor, NY
:
Cold Spring Harbor Laboratory Press
;
2000
:
503
-
528
.
49.
Hinnebusch
AG
. Translational control of GCN4: gene-specific regulation by phosphorylation of eIF2. In:
Hershey
JWB
,
Mathews
MB
,
Sonenberg
N
, eds.
Translational Control
,
Cold Spring Harbor
:
Cold Spring Harbor Laboratory Press
;
1996
:
199
-
244
.
50.
Zhang
S
,
Macias-Garcia
A
,
Velazquez
J
,
Paltrinieri
E
,
Kaufman
RJ
,
Chen
JJ
.
HRI coordinates translation by eIF2αP and mTORC1 to mitigate ineffective erythropoiesis in mice during iron deficiency
.
Blood
.
2018
;
131
(
4
):
450
-
461
.
51.
Kawatani
Y
,
Suzuki
T
,
Shimizu
R
,
Kelly
VP
,
Yamamoto
M
.
Nrf2 and selenoproteins are essential for maintaining oxidative homeostasis in erythrocytes and protecting against hemolytic anemia
.
Blood
.
2011
;
117
(
3
):
986
-
996
.
52.
Marinkovic
D
,
Zhang
X
,
Yalcin
S
, et al
.
Foxo3 is required for the regulation of oxidative stress in erythropoiesis
.
J Clin Invest
.
2007
;
117
(
8
):
2133
-
2144
.
53.
Yu
D
,
dos Santos
CO
,
Zhao
G
, et al
.
miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta
.
Genes Dev
.
2010
;
24
(
15
):
1620
-
1633
.
54.
He
CH
,
Gong
P
,
Hu
B
, et al
.
Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation
.
J Biol Chem
.
2001
;
276
(
24
):
20858
-
20865
.
55.
Dey
S
,
Sayers
CM
,
Verginadis
II
, et al
.
ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis
.
J Clin Invest
.
2015
;
125
(
7
):
2592
-
2608
.
56.
Masuoka
HC
,
Townes
TM
.
Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice
.
Blood
.
2002
;
99
(
3
):
736
-
745
.
57.
Knight
ZA
,
Schmidt
SF
,
Birsoy
K
,
Tan
K
,
Friedman
JM
.
A critical role for mTORC1 in erythropoiesis and anemia
.
eLife
.
2014
;
3
:
e01913
.
58.
Back
SH
,
Scheuner
D
,
Han
J
, et al
.
Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells
.
Cell Metab
.
2009
;
10
(
1
):
13
-
26
.
59.
Ingolia
NT
,
Ghaemmaghami
S
,
Newman
JR
,
Weissman
JS
.
Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling
.
Science
.
2009
;
324
(
5924
):
218
-
223
.
60.
Chiabrando
D
,
Mercurio
S
,
Tolosano
E
.
Heme and erythropoieis: more than a structural role
.
Haematologica
.
2014
;
99
(
6
):
973
-
983
.
61.
Muckenthaler
MU
,
Rivella
S
,
Hentze
MW
,
Galy
B
.
A red carpet for iron metabolism
.
Cell
.
2017
;
168
(
3
):
344
-
361
.
62.
Lara-Astiaso
D
,
Weiner
A
,
Lorenzo-Vivas
E
, et al
.
Immunogenetics. Chromatin state dynamics during blood formation
.
Science
.
2014
;
345
(
6199
):
943
-
949
.
63.
Morita
M
,
Gravel
SP
,
Chénard
V
, et al
.
mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
.
Cell Metab
.
2013
;
18
(
5
):
698
-
711
.
64.
Shpilka
T
,
Haynes
CM
.
The mitochondrial UPR: mechanisms, physiological functions and implications in ageing
.
Nat Rev Mol Cell Biol
.
2018
;
19
(
2
):
109
-
120
.
65.
Liu
X
,
Zhang
Y
,
Ni
M
, et al
.
Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation
.
Nat Cell Biol
.
2017
;
19
(
6
):
626
-
638
.
66.
Fiorese
CJ
,
Schulz
AM
,
Lin
YF
,
Rosin
N
,
Pellegrino
MW
,
Haynes
CM
.
The transcription factor ATF5 mediates a mammalian mitochondrial UPR
.
Curr Biol
.
2016
;
26
(
15
):
2037
-
2043
.
67.
Quirós
PM
,
Prado
MA
,
Zamboni
N
, et al
.
Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals
.
J Cell Biol
.
2017
;
216
(
7
):
2027
-
2045
.
68.
Dogan
SA
,
Pujol
C
,
Maiti
P
, et al
.
Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart
.
Cell Metab
.
2014
;
19
(
3
):
458
-
469
.
69.
Plasschaert
RN
,
Bartolomei
MS
.
Tissue-specific regulation and function of Grb10 during growth and neuronal commitment
.
Proc Natl Acad Sci USA
.
2015
;
112
(
22
):
6841
-
6847
.
70.
Yan
X
,
Himburg
HA
,
Pohl
K
, et al
.
Deletion of the imprinted gene Grb10 promotes hematopoietic stem cell self-renewal and regeneration
.
Cell Reports
.
2016
;
17
(
6
):
1584
-
1594
.
71.
Mehta
C
,
Johnson
KD
,
Gao
X
, et al
.
Integrating enhancer mechanisms to establish a hierarchical blood development program
.
Cell Reports
.
2017
;
20
(
12
):
2966
-
2979
.
72.
Boyce
M
,
Bryant
KF
,
Jousse
C
, et al
.
A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress
.
Science
.
2005
;
307
(
5711
):
935
-
939
.
73.
Sankaran
VG
,
Menne
TF
,
Xu
J
, et al
.
Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A
.
Science
.
2008
;
322
(
5909
):
1839
-
1842
.
74.
Sankaran
VG
,
Xu
J
,
Ragoczy
T
, et al
.
Developmental and species-divergent globin switching are driven by BCL11A
.
Nature
.
2009
;
460
(
7259
):
1093
-
1097
.
75.
Dulmovits
BM
,
Appiah-Kubi
AO
,
Papoin
J
, et al
.
Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors
.
Blood
.
2016
;
127
(
11
):
1481
-
1492
.
76.
Chen
T
,
Ozel
D
,
Qiao
Y
, et al
.
Chemical genetics identify eIF2α kinase heme-regulated inhibitor as an anticancer target
.
Nat Chem Biol
.
2011
;
7
(
9
):
610
-
616
.
77.
Burwick
N
,
Zhang
MY
,
de la Puente
P
, et al
.
The eIF2-alpha kinase HRI is a novel therapeutic target in multiple myeloma
.
Leuk Res
.
2017
;
55
:
23
-
32
.
78.
Burwick
N
,
Aktas
BH
.
The eIF2-alpha kinase HRI: a potential target beyond the red blood cell
.
Expert Opin Ther Targets
.
2017
;
21
(
12
):
1171
-
1177
.
79.
White
MC
,
Schroeder
RD
,
Zhu
K
,
Xiong
K
,
McConkey
DJ
.
HRI-mediated translational repression reduces proteotoxicity and sensitivity to bortezomib in human pancreatic cancer cells
.
Oncogene
.
2018
;
37
(
32
):
4413
-
4427
.
80.
Zhang
X
,
Campreciós
G
,
Rimmelé
P
, et al
.
FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis
.
Am J Hematol
.
2014
;
89
(
10
):
954
-
963
.
81.
Wang
J
,
Tran
J
,
Wang
H
, et al
.
mTOR Inhibition improves anaemia and reduces organ damage in a murine model of sickle cell disease
.
Br J Haematol
.
2016
;
174
(
3
):
461
-
469
.
82.
Li
H
,
Rybicki
AC
,
Suzuka
SM
, et al
.
Transferrin therapy ameliorates disease in beta-thalassemic mice
.
Nat Med
.
2010
;
16
(
2
):
177
-
182
.
83.
Gelderman
MP
,
Baek
JH
,
Yalamanoglu
A
, et al
.
Reversal of hemochromatosis by apotransferrin in non-transfused and transfused Hbbth3/+ (heterozygous B1/B2 globin gene deletion) mice
.
Haematologica
.
2015
;
100
(
5
):
611
-
622
.
84.
Li
H
,
Choesang
T
,
Bao
W
, et al
.
Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice
.
Blood
.
2017
;
129
(
11
):
1514
-
1526
.
85.
Nai
A
,
Lidonnici
MR
,
Rausa
M
, et al
.
The second transferrin receptor regulates red blood cell production in mice
.
Blood
.
2015
;
125
(
7
):
1170
-
1179
.
86.
Khalil
S
,
Delehanty
L
,
Grado
S
, et al
.
Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor
.
J Exp Med
.
2018
;
215
(
2
):
661
-
679
.
87.
Huang
NJ
,
Lin
YC
,
Lin
CY
, et al
.
Enhanced phosphocholine metabolism is essential for terminal erythropoiesis
.
Blood
.
2018
;
131
(
26
):
2955
-
2966
.
88.
Oburoglu
L
,
Tardito
S
,
Fritz
V
, et al
.
Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification [published correction appears in Cell Stem Cell. 2014;15(5):666-668]
.
Cell Stem Cell
.
2014
;
15
(
2
):
169
-
184
.
You do not currently have access to this content.