Key Points

  • Extracellular ATP activates NLRP3 inflammasomes, resulting in MDSC dysfunction.

  • Preventing MDSC inflammasome activation and conserving IL-1β secretion decreases GVHD lethality.

Abstract

Myeloid-derived suppressor cells (MDSCs) can subdue inflammation. In mice with acute graft-versus-host disease (GVHD), donor MDSC infusion enhances survival that is only partial and transient because of MDSC inflammasome activation early posttransfer, resulting in differentiation and loss of suppressor function. Here we demonstrate that conditioning regimen–induced adenosine triphosphate (ATP) release is a primary driver of MDSC dysfunction through ATP receptor (P2x7R) engagement and NLR pyrin family domain 3 (NLRP3) inflammasome activation. P2x7R or NLRP3 knockout (KO) donor MDSCs provided significantly higher survival than wild-type (WT) MDSCs. Although in vivo pharmacologic targeting of NLRP3 or P2x7R promoted recipient survival, indicating in vivo biologic effects, no synergistic survival advantage was seen when combined with MDSCs. Because activated inflammasomes release mature interleukin-1β (IL-1β), we expected that IL-1β KO donor MDSCs would be superior in subverting GVHD, but such MDSCs proved inferior relative to WT. IL-1β release and IL-1 receptor expression was required for optimal MDSC function, and exogenous IL-1β added to suppression assays that included MDSCs increased suppressor potency. These data indicate that prolonged systemic NLRP3 inflammasome inhibition and decreased IL-1β could diminish survival in GVHD. However, loss of inflammasome activation and IL-1β release restricted to MDSCs rather than systemic inhibition allowed non-MDSC IL-1β signaling, improving survival. Extracellular ATP catalysis with peritransplant apyrase administered into the peritoneum, the ATP release site, synergized with WT MDSCs, as did regulatory T-cell infusion, which we showed reduced but did not eliminate MDSC inflammasome activation, as assessed with a novel inflammasome reporter strain. These findings will inform future clinical using MDSCs to decrease alloresponses in inflammatory environments.

REFERENCES

REFERENCES
1.
Blazar
BR
,
Murphy
WJ
,
Abedi
M
.
Advances in graft-versus-host disease biology and therapy
.
Nat Rev Immunol
.
2012
;
12
(
6
):
443
-
458
.
2.
Monjazeb
AM
,
Tietze
JK
,
Grossenbacher
SK
, et al
.
Bystander activation and anti-tumor effects of CD8+ T cells following Interleukin-2 based immunotherapy is independent of CD4+ T cell help
.
PLoS One
.
2014
;
9
(
8
):
e102709
.
3.
Hülsdünker
J
,
Ottmüller
KJ
,
Neeff
HP
, et al
.
Neutrophils provide cellular communication between ileum and mesenteric lymph nodes at graft-versus-host disease onset
.
Blood
.
2018
;
131
(
16
):
1858
-
1869
.
4.
Schwab
L
,
Goroncy
L
,
Palaniyandi
S
, et al
.
Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage
.
Nat Med
.
2014
;
20
(
6
):
648
-
654
.
5.
Ostrand-Rosenberg
S
,
Fenselau
C
.
Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment
.
J Immunol
.
2018
;
200
(
2
):
422
-
431
.
6.
Galli
SJ
,
Borregaard
N
,
Wynn
TA
.
Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils
.
Nat Immunol
.
2011
;
12
(
11
):
1035
-
1044
.
7.
Cuenca
AG
,
Delano
MJ
,
Kelly-Scumpia
KM
, et al
.
A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma
.
Mol Med
.
2011
;
17
(
3-4
):
281
-
292
.
8.
Stout
RD
,
Suttles
J
.
Functional plasticity of macrophages: reversible adaptation to changing microenvironments
.
J Leukoc Biol
.
2004
;
76
(
3
):
509
-
513
.
9.
Gabrilovich
DI
,
Nagaraj
S
.
Myeloid-derived suppressor cells as regulators of the immune system
.
Nat Rev Immunol
.
2009
;
9
(
3
):
162
-
174
.
10.
Gabrilovich
DI
,
Ostrand-Rosenberg
S
,
Bronte
V
.
Coordinated regulation of myeloid cells by tumours
.
Nat Rev Immunol
.
2012
;
12
(
4
):
253
-
268
.
11.
Bronte
V
,
Mocellin
S
.
Suppressive influences in the immune response to cancer
.
J Immunother
.
2009
;
32
(
1
):
1
-
11
.
12.
Beury
DW
,
Parker
KH
,
Nyandjo
M
,
Sinha
P
,
Carter
KA
,
Ostrand-Rosenberg
S
.
Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors
.
J Leukoc Biol
.
2014
;
96
(
6
):
1109
-
1118
.
13.
Highfill
SL
,
Rodriguez
PC
,
Zhou
Q
, et al
.
Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13
.
Blood
.
2010
;
116
(
25
):
5738
-
5747
.
14.
Koehn
BH
,
Apostolova
P
,
Haverkamp
JM
, et al
.
GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells
.
Blood
.
2015
;
126
(
13
):
1621
-
1628
.
15.
Nagaraj
S
,
Gabrilovich
DI
.
Regulation of suppressive function of myeloid-derived suppressor cells by CD4+ T cells
.
Semin Cancer Biol
.
2012
;
22
(
4
):
282
-
288
.
16.
Zhang
J
,
Chen
H-M
,
Ma
G
, et al
.
The mechanistic study behind suppression of GVHD while retaining GVL activities by myeloid-derived suppressor cells
.
Leukemia
.
2019
;
33
(
8
):
2078
-
2089
.
17.
Rodriguez
PC
,
Zea
AH
,
Culotta
KS
,
Zabaleta
J
,
Ochoa
JB
,
Ochoa
AC
.
Regulation of T cell receptor CD3zeta chain expression by L-arginine
.
J Biol Chem
.
2002
;
277
(
24
):
21123
-
21129
.
18.
Geiger
R
,
Rieckmann
JC
,
Wolf
T
, et al
.
L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity
.
Cell
.
2016
;
167
(
3
):
829
-
842.e13
.
19.
Ugel
S
,
De Sanctis
F
,
Mandruzzato
S
,
Bronte
V
.
Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages
.
J Clin Invest
.
2015
;
125
(
9
):
3365
-
3376
.
20.
Talmadge
JE
,
Gabrilovich
DI
.
History of myeloid-derived suppressor cells
.
Nat Rev Cancer
.
2013
;
13
(
10
):
739
-
752
.
21.
Schroder
K
,
Tschopp
J
.
The inflammasomes
.
Cell
.
2010
;
140
(
6
):
821
-
832
.
22.
Martinon
F
,
Burns
K
,
Tschopp
J
.
The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta
.
Mol Cell
.
2002
;
10
(
2
):
417
-
426
.
23.
Rathinam
VAK
,
Fitzgerald
KA
.
Inflammasome complexes: emerging mechanisms and effector functions
.
Cell
.
2016
;
165
(
4
):
792
-
800
.
24.
Latz
E
.
The inflammasomes: mechanisms of activation and function
.
Curr Opin Immunol
.
2010
;
22
(
1
):
28
-
33
.
25.
Rathinam
VAK
,
Vanaja
SK
,
Fitzgerald
KA
.
Regulation of inflammasome signaling
.
Nat Immunol
.
2012
;
13
(
4
):
333
-
342
.
26.
Cooke
KR
,
Kobzik
L
,
Martin
TR
, et al
.
An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin
.
Blood
.
1996
;
88
(
8
):
3230
-
3239
.
27.
Coll
RC
,
Robertson
AAB
,
Chae
JJ
, et al
.
A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases
.
Nat Med
.
2015
;
21
(
3
):
248
-
255
.
28.
Basiorka
AA
,
McGraw
KL
,
Eksioglu
EA
, et al
.
The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype
.
Blood
.
2016
;
128
(
25
):
2960
-
2975
.
29.
Borges da Silva
H
,
Beura
LK
,
Wang
H
, et al
.
The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells
.
Nature
.
2018
;
559
(
7713
):
264
-
268
.
30.
Zeiser
R
,
Robson
SC
,
Vaikunthanathan
T
,
Dworak
M
,
Burnstock
G
.
Unlocking the potential of purinergic signaling in transplantation
.
Am J Transplant
.
2016
;
16
(
10
):
2781
-
2794
.
31.
Jankovic
D
,
Ganesan
J
,
Bscheider
M
, et al
.
The Nlrp3 inflammasome regulates acute graft-versus-host disease
.
J Exp Med
.
2013
;
210
(
10
):
1899
-
1910
.
32.
Holler
E
,
Landfried
K
,
Meier
J
,
Hausmann
M
,
Rogler
G
.
The role of bacteria and pattern recognition receptors in GVHD
.
Int J Inflamm
.
2010
;
2010
(
2
):
814326
.
33.
Heidegger
S
,
van den Brink
MRM
,
Haas
T
,
Poeck
H
.
The role of pattern-recognition receptors in graft-versus-host disease and graft-versus-leukemia after allogeneic stem cell transplantation
.
Front Immunol
.
2014
;
5
(
16
):
337
.
34.
Akira
S
,
Uematsu
S
,
Takeuchi
O
.
Pathogen recognition and innate immunity
.
Cell
.
2006
;
124
(
4
):
783
-
801
.
35.
Medzhitov
R
,
Preston-Hurlburt
P
,
Kopp
E
, et al
.
MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways
.
Mol Cell
.
1998
;
2
(
2
):
253
-
258
.
36.
Yamamoto
M
,
Sato
S
,
Hemmi
H
, et al
.
Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway
.
Science
.
2003
;
301
(
5633
):
640
-
643
.
37.
Seki
E
,
Tsutsui
H
,
Nakano
H
, et al
.
Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1β
.
J Immunol
.
2001
;
166
(
4
):
2651
-
2657
.
38.
Imamura
M
,
Tsutsui
H
,
Yasuda
K
, et al
.
Contribution of TIR domain-containing adapter inducing IFN-β-mediated IL-18 release to LPS-induced liver injury in mice
.
J Hepatol
.
2009
;
51
(
2
):
333
-
341
.
39.
Tsutsui
H
,
Imamura
M
,
Fujimoto
J
,
Nakanishi
K
.
The TLR4/TRIF-mediated activation of NLRP3 inflammasome underlies endotoxin-induced liver injury in mice
.
Gastroenterol Res Pract
.
2010
;
2010
:
641865
.
40.
Martinon
F
,
Mayor
A
,
Tschopp
J
.
The inflammasomes: guardians of the body
.
Annu Rev Immunol
.
2009
;
27
:
229
-
265
.
41.
Lamkanfi
M
,
Kanneganti
T-D
,
Franchi
L
,
Núñez
G
.
Caspase-1 inflammasomes in infection and inflammation
.
J Leukoc Biol
.
2007
;
82
(
2
):
220
-
225
.
42.
Franchi
L
,
Eigenbrod
T
,
Muñoz-Planillo
R
,
Nuñez
G
.
The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis
.
Nat Immunol
.
2009
;
10
(
3
):
241
-
247
.
43.
Rathinam
VAK
,
Jiang
Z
,
Waggoner
SN
, et al
.
The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses
.
Nat Immunol
.
2010
;
11
(
5
):
395
-
402
.
44.
Kayagaki
N
,
Warming
S
,
Lamkanfi
M
, et al
.
Non-canonical inflammasome activation targets caspase-11
.
Nature
.
2011
;
479
(
7371
):
117
-
121
.
45.
Kayagaki
N
,
Wong
MT
,
Stowe
IB
, et al
.
Noncanonical inflammasome activation by intracellular LPS independent of TLR4
.
Science
.
2013
;
341
(
6151
):
1246
-
1249
.
46.
Apostolova
P
,
Zeiser
R
.
The role of purine metabolites as DAMPs in acute graft-versus-host disease
.
Front Immunol
.
2016
;
7
(
8
):
439
.
47.
Zhou
J
,
Wu
J
,
Chen
X
, et al
.
Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions
.
Int Immunopharmacol
.
2011
;
11
(
7
):
890
-
898
.
48.
Lamkanfi
M
,
Mueller
JL
,
Vitari
AC
, et al
.
Glyburide inhibits the cryopyrin/Nalp3 inflammasome
.
J Cell Biol
.
2009
;
187
(
1
):
61
-
70
.
49.
Ashcroft
FM
.
ATP-sensitive potassium channelopathies: focus on insulin secretion
.
J Clin Invest
.
2005
;
115
(
8
):
2047
-
2058
.
50.
Youm
Y-H
,
Nguyen
KY
,
Grant
RW
, et al
.
The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease
.
Nat Med
.
2015
;
21
(
3
):
263
-
269
.
51.
Liew
EL
,
Araki
M
,
Hironaka
Y
, et al
.
Identification of AIM2 as a downstream target of JAK2V617F
.
Exp Hematol Oncol
.
2015
;
5
(
1
):
2
.
52.
Spoerl
S
,
Mathew
NR
,
Bscheider
M
, et al
.
Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease
.
Blood
.
2014
;
123
(
24
):
3832
-
3842
.
53.
Stark
R
,
Wesselink
TH
,
Behr
FM
, et al
.
TRM maintenance is regulated by tissue damage via P2RX7
.
Sci Immunol
.
2018
;
3
(
30
):
eaau1022
.
54.
Ferrari
D
,
Pizzirani
C
,
Adinolfi
E
, et al
.
The P2X7 receptor: a key player in IL-1 processing and release
.
J Immunol
.
2006
;
176
(
7
):
3877
-
3883
.
55.
Klämbt
V
,
Wohlfeil
SA
,
Schwab
L
, et al
.
A novel function for P2Y2 in myeloid recipient-derived cells during graft-versus-host disease
.
J Immunol
.
2015
;
195
(
12
):
5795
-
5804
.
56.
Wilhelm
K
,
Ganesan
J
,
Müller
T
, et al
.
Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R
.
Nat Med
.
2010
;
16
(
12
):
1434
-
1438
.
57.
Iwawaki
T
,
Akai
R
,
Oikawa
D
, et al
.
Transgenic mouse model for imaging of interleukin-1β-related inflammation in vivo
.
Sci Rep
.
2015
;
5
:
17205
.
58.
Dinarello
CA
.
Immunological and inflammatory functions of the interleukin-1 family
.
Annu Rev Immunol
.
2009
;
27
:
519
-
550
.
59.
Hyvärinen
K
,
Ritari
J
,
Koskela
S
, et al
.
Genetic polymorphism related to monocyte-macrophage function is associated with graft-versus-host disease
.
Sci Rep
.
2017
;
7
(
1
):
15666
.
60.
Abhyankar
S
,
Gilliland
DG
,
Ferrara
JL
.
Interleukin-1 is a critical effector molecule during cytokine dysregulation in graft versus host disease to minor histocompatibility antigens
.
Transplantation
.
1993
;
56
(
6
):
1518
-
1523
.
61.
Dinarello
CA
,
Simon
A
,
van der Meer
JWM
.
Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases
.
Nat Rev Drug Discov
.
2012
;
11
(
8
):
633
-
652
.
62.
Antin
JH
,
Weinstein
HJ
,
Guinan
EC
, et al
.
Recombinant human interleukin-1 receptor antagonist in the treatment of steroid-resistant graft-versus-host disease
.
Blood
.
1994
;
84
(
4
):
1342
-
1348
.
63.
McCarthy
PL
Jr
,
Williams
L
,
Harris-Bacile
M
, et al
.
A clinical phase I/II study of recombinant human interleukin-1 receptor in glucocorticoid-resistant graft-versus-host disease
.
Transplantation
.
1996
;
62
(
5
):
626
-
631
.
64.
Antin
JH
,
Weisdorf
D
,
Neuberg
D
, et al
.
Interleukin-1 blockade does not prevent acute graft-versus-host disease: results of a randomized, double-blind, placebo-controlled trial of interleukin-1 receptor antagonist in allogeneic bone marrow transplantation
.
Blood
.
2002
;
100
(
10
):
3479
-
3482
.
65.
Furlan
SN
,
Watkins
B
,
Tkachev
V
, et al
.
Systems analysis uncovers inflammatory Th/Tc17-driven modules during acute GVHD in monkey and human T cells
.
Blood
.
2016
;
128
(
21
):
2568
-
2579
.
66.
Pan
PY
,
Ma
G
,
Weber
KJ
, et al
.
Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer
.
Cancer Res
.
2010
;
70
(
1
):
99
-
108
.
67.
Nestel
FP
,
Price
KS
,
Seemayer
TA
,
Lapp
WS
.
Macrophage priming and lipopolysaccharide-triggered release of tumor necrosis factor alpha during graft-versus-host disease
.
J Exp Med
.
1992
;
175
(
2
):
405
-
413
.
68.
Cooke
KR
,
Hill
GR
,
Crawford
JM
, et al
.
Tumor necrosis factor- alpha production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graft-versus-host disease
.
J Clin Invest
.
1998
;
102
(
10
):
1882
-
1891
.
69.
Cooke
KR
,
Gerbitz
A
,
Crawford
JM
, et al
.
LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation
.
J Clin Invest
.
2001
;
107
(
12
):
1581
-
1589
.
70.
Liu
Y
,
Xiao
Y
,
Li
Z
.
P2X7 receptor positively regulates MyD88-dependent NF-κB activation
.
Cytokine
.
2011
;
55
(
2
):
229
-
236
.
71.
Mantovani
A
,
Dinarello
CA
,
Molgora
M
,
Garlanda
C
.
Interleukin-1 and related cytokines in the regulation of inflammation and immunity
.
Immunity
.
2019
;
50
(
4
):
778
-
795
.
72.
Dinarello
CA
,
Thompson
RC
.
Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro
.
Immunol Today
.
1991
;
12
(
11
):
404
-
410
.
73.
Colotta
F
,
Re
F
,
Muzio
M
, et al
.
Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4
.
Science
.
1993
;
261
(
5120
):
472
-
475
.
74.
Bersudsky
M
,
Luski
L
,
Fishman
D
, et al
.
Non-redundant properties of IL-1α and IL-1β during acute colon inflammation in mice
.
Gut
.
2014
;
63
(
4
):
598
-
609
.
75.
Reddy
P
,
Teshima
T
,
Kukuruga
M
, et al
.
Interleukin-18 regulates acute graft-versus-host disease by enhancing Fas-mediated donor T cell apoptosis
.
J Exp Med
.
2001
;
194
(
10
):
1433
-
1440
.
76.
Reddy
P
,
Teshima
T
,
Hildebrandt
G
, et al
.
Pretreatment of donors with interleukin-18 attenuates acute graft-versus-host disease via STAT6 and preserves graft-versus-leukemia effects
.
Blood
.
2003
;
101
(
7
):
2877
-
2885
.
77.
Min
C-K
,
Maeda
Y
,
Lowler
K
, et al
.
Paradoxical effects of interleukin-18 on the severity of acute graft-versus-host disease mediated by CD4+ and CD8+ T-cell subsets after experimental allogeneic bone marrow transplantation
.
Blood
.
2004
;
104
(
10
):
3393
-
3399
.
You do not currently have access to this content.