Key Points

  • We identified new genetic loci contributing to the risk of venous thromboembolism, some of which are outside known coagulation pathways.

  • We provide evidence that blood traits may contribute to the underlying biology of venous thromboembolism risk.

Abstract

Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality. To advance our understanding of the biology contributing to VTE, we conducted a genome-wide association study (GWAS) of VTE and a transcriptome-wide association study (TWAS) based on imputed gene expression from whole blood and liver. We meta-analyzed GWAS data from 18 studies for 30 234 VTE cases and 172 122 controls and assessed the association between 12 923 718 genetic variants and VTE. We generated variant prediction scores of gene expression from whole blood and liver tissue and assessed them for association with VTE. Mendelian randomization analyses were conducted for traits genetically associated with novel VTE loci. We identified 34 independent genetic signals for VTE risk from GWAS meta-analysis, of which 14 are newly reported associations. This included 11 newly associated genetic loci (C1orf198, PLEK, OSMR-AS1, NUGGC/SCARA5, GRK5, MPHOSPH9, ARID4A, PLCG2, SMG6, EIF5A, and STX10) of which 6 replicated, and 3 new independent signals in 3 known genes. Further, TWAS identified 5 additional genetic loci with imputed gene expression levels differing between cases and controls in whole blood (SH2B3, SPSB1, RP11-747H7.3, RP4-737E23.2) and in liver (ERAP1). At some GWAS loci, we found suggestive evidence that the VTE association signal for novel and previously known regions colocalized with expression quantitative trait locus signals. Mendelian randomization analyses suggested that blood traits may contribute to the underlying risk of VTE. To conclude, we identified 16 novel susceptibility loci for VTE; for some loci, the association signals are likely mediated through gene expression of nearby genes.

REFERENCES

REFERENCES
1.
Silverstein
MD
,
Heit
JA
,
Mohr
DN
,
Petterson
TM
,
O’Fallon
WM
,
Melton
LJ
III
.
Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study
.
Arch Intern Med
.
1998
;
158
(
6
):
585
-
593
.
2.
Heit
JA
,
Silverstein
MD
,
Mohr
DN
,
Petterson
TM
,
O’Fallon
WM
,
Melton
LJ
III
.
Predictors of survival after deep vein thrombosis and pulmonary embolism: a population-based, cohort study
.
Arch Intern Med
.
1999
;
159
(
5
):
445
-
453
.
3.
Egeberg
O
.
Thrombophilia caused by inheritable deficiency of blood antithrombin
.
Scand J Clin Lab Invest
.
1965
;
17
(
1
):
92
.
4.
Trégouët
DA
,
Heath
S
,
Saut
N
, et al
.
Common susceptibility alleles are unlikely to contribute as strongly as the FV and ABO loci to VTE risk: results from a GWAS approach
.
Blood
.
2009
;
113
(
21
):
5298
-
5303
.
5.
Heit
JA
,
Armasu
SM
,
Asmann
YW
, et al
.
A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q
.
J Thromb Haemost
.
2012
;
10
(
8
):
1521
-
1531
.
6.
Tang
W
,
Teichert
M
,
Chasman
DI
, et al
.
A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium
.
Genet Epidemiol
.
2013
;
37
(
5
):
512
-
521
.
7.
Germain
M
,
Chasman
DI
,
de Haan
H
, et al;
Cardiogenics Consortium
.
Meta-analysis of 65,734 individuals identifies TSPAN15 and SLC44A2 as two susceptibility loci for venous thromboembolism
.
Am J Hum Genet
.
2015
;
96
(
4
):
532
-
542
.
8.
Klarin
D
,
Emdin
CA
,
Natarajan
P
,
Conrad
MF
,
Kathiresan
S
;
INVENT Consortium
.
Genetic analysis of venous thromboembolism in UK Biobank identifies the ZFPM2 locus and implicates obesity as a causal risk factor
.
Circ Cardiovasc Genet
.
2017
;
10
(
2
):
e001643
.
9.
Hinds
DA
,
Buil
A
,
Ziemek
D
, et al;
METASTROKE Consortium, INVENT Consortium
.
Genome-wide association analysis of self-reported events in 6135 individuals and 252,827 controls identifies 8 loci associated with thrombosis
.
Hum Mol Genet
.
2016
;
25
(
9
):
1867
-
1874
.
10.
Gusev
A
,
Ko
A
,
Shi
H
, et al
.
Integrative approaches for large-scale transcriptome-wide association studies
.
Nat Genet
.
2016
;
48
(
3
):
245
-
252
.
11.
Giambartolomei
C
,
Vukcevic
D
,
Schadt
EE
, et al
.
Bayesian test for colocalisation between pairs of genetic association studies using summary statistics
.
PLoS Genet
.
2014
;
10
(
5
):
e1004383
.
12.
Winkler
TW
,
Day
FR
,
Croteau-Chonka
DC
, et al;
Genetic Investigation of Anthropometric Traits (GIANT) Consortium
.
Quality control and conduct of genome-wide association meta-analyses
.
Nat Protoc
.
2014
;
9
(
5
):
1192
-
1212
.
13.
Verma
SS
,
de Andrade
M
,
Tromp
G
, et al
.
Imputation and quality control steps for combining multiple genome-wide datasets
.
Front Genet
.
2014
;
5
:
370
.
14.
Michailidou
K
,
Lindström
S
,
Dennis
J
, et al;
ConFab/AOCS Investigators
.
Association analysis identifies 65 new breast cancer risk loci
.
Nature
.
2017
;
551
(
7678
):
92
-
94
.
15.
Willer
CJ
,
Li
Y
,
Abecasis
GR
.
METAL: fast and efficient meta-analysis of genomewide association scans
.
Bioinformatics
.
2010
;
26
(
17
):
2190
-
2191
.
16.
de Bakker
PI
,
Ferreira
MA
,
Jia
X
,
Neale
BM
,
Raychaudhuri
S
,
Voight
BF
.
Practical aspects of imputation-driven meta-analysis of genome-wide association studies
.
Hum Mol Genet
.
2008
;
17
(
R2
):
R122
-
R128
.
17.
Magi
R
,
Lindgren
CM
,
Morris
AP
.
Meta-analysis of sex-specific genome-wide association studies
.
Genet Epidemiol
.
2010
;
34
(
8
):
846
-
853
.
18.
Dudbridge
F
,
Gusnanto
A
.
Estimation of significance thresholds for genomewide association scans
.
Genet Epidemiol
.
2008
;
32
(
3
):
227
-
234
.
19.
Pe’er
I
,
Yelensky
R
,
Altshuler
D
,
Daly
MJ
.
Estimation of the multiple testing burden for genomewide association studies of nearly all common variants
.
Genet Epidemiol
.
2008
;
32
(
4
):
381
-
385
.
20.
Yang
J
,
Lee
SH
,
Goddard
ME
,
Visscher
PM
.
Genome-wide complex trait analysis (GCTA): methods, data analyses, and interpretations
.
Methods Mol Biol
.
2013
;
1019
:
215
-
236
.
21.
Yang
J
,
Ferreira
T
,
Morris
AP
, et al
.
Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
.
Nat Genet
.
2012
;
44
(
4
):
369
-
375
,
S1-3
.
22.
Lindström
S
,
Loomis
S
,
Turman
C
, et al
.
A comprehensive survey of genetic variation in 20,691 subjects from four large cohorts
.
PLoS One
.
2017
;
12
(
3
):
e0173997
.
23.
de Vries
PS
,
Chasman
DI
,
Sabater-Lleal
M
, et al
.
A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration
.
Hum Mol Genet
.
2016
;
25
(
2
):
358
-
370
.
24.
Smith
NL
,
Huffman
JE
,
Strachan
DP
, et al
.
Genetic predictors of fibrin D-dimer levels in healthy adults
.
Circulation
.
2011
;
123
(
17
):
1864
-
1872
.
25.
de Vries
PS
,
Sabater-Lleal
M
,
Huffman
JE
, et al;
MEGASTROKE Consortium of the International Stroke Genetics Consortium
.
A genome-wide association study identifies new loci for factor VII and implicates factor VII in ischemic stroke etiology
.
Blood
.
2019
;
133
(
9
):
967
-
977
.
26.
Sabater-Lleal
M
,
Huffman
JE
,
de Vries
PS
, et al
.
Genome-wide association trans-ethnic meta-analyses identifies novel associations regulating coagulation factor VIII and von Willebrand factor plasma levels
.
Circulation
.
2019
;
139
(
5
):
620
-
635
.
27.
Sennblad
B
,
Basu
S
,
Mazur
J
, et al
.
Genome-wide association study with additional genetic and post-transcriptional analyses reveals novel regulators of plasma factor XI levels
.
Hum Mol Genet
.
2017
;
26
(
3
):
637
-
649
.
28.
Huang
J
,
Huffman
JE
,
Yamakuchi
M
, et al;
CHARGE Consortium Hemostatic Factor Working Group
.
Genome-wide association study for circulating tissue plasminogen activator levels and functional follow-up implicates endothelial STXBP5 and STX2 [published correction appears in Arterioscler Thromb Vasc Biol. 2014;34(8):E19]
.
Arterioscler Thromb Vasc Biol
.
2014
;
34
(
5
):
1093
-
1101
.
29.
Huang
J
,
Sabater-Lleal
M
,
Asselbergs
FW
, et al;
CARDIOGENICS Consortium
.
Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation
.
Blood
.
2012
;
120
(
24
):
4873
-
4881
.
30.
Tang
W
,
Schwienbacher
C
,
Lopez
LM
, et al
.
Genetic associations for activated partial thromboplastin time and prothrombin time, their gene expression profiles, and risk of coronary artery disease
.
Am J Hum Genet
.
2012
;
91
(
1
):
152
-
162
.
31.
Klarin
D
,
Busenkell
E
,
Judy
R
, et al
.
Genetic analysis of venous thromboembolism highlights the genetic overlap of thrombosis with lipids and arterial vascular disease
.
Nat Genet
.
In press
.
32.
Yang
J
,
Benyamin
B
,
McEvoy
BP
, et al
.
Common SNPs explain a large proportion of the heritability for human height
.
Nat Genet
.
2010
;
42
(
7
):
565
-
569
.
33.
Yang
J
,
Lee
SH
,
Goddard
ME
,
Visscher
PM
.
GCTA: a tool for genome-wide complex trait analysis
.
Am J Hum Genet
.
2011
;
88
(
1
):
76
-
82
.
34.
Zaitlen
N
,
Kraft
P
.
Heritability in the genome-wide association era
.
Hum Genet
.
2012
;
131
(
10
):
1655
-
1664
.
35.
Dudbridge
F
.
Power and predictive accuracy of polygenic risk scores [published correction appears in PLoS Genet. 2013;9(4)]
.
PLoS Genet
.
2013
;
9
(
3
):
e1003348
.
36.
Ward
LD
,
Kellis
M
.
HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants
.
Nucleic Acids Res
.
2012
;
40
(
Database issue
):
D930
-
D934
.
37.
GTEx Consortium
.
The Genotype-Tissue Expression (GTEx) project
.
Nat Genet
.
2013
;
45
(
6
):
580
-
585
.
38.
Wright
FA
,
Sullivan
PF
,
Brooks
AI
, et al
.
Heritability and genomics of gene expression in peripheral blood
.
Nat Genet
.
2014
;
46
(
5
):
430
-
437
.
39.
Burgess
S
,
Butterworth
A
,
Thompson
SG
.
Mendelian randomization analysis with multiple genetic variants using summarized data
.
Genet Epidemiol
.
2013
;
37
(
7
):
658
-
665
.
40.
Burgess
S
,
Scott
RA
,
Timpson
NJ
,
Davey Smith
G
,
Thompson
SG
;
EPIC-InterAct Consortium
.
Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors
.
Eur J Epidemiol
.
2015
;
30
(
7
):
543
-
552
.
41.
Bowden
J
,
Davey Smith
G
,
Burgess
S
.
Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
.
Int J Epidemiol
.
2015
;
44
(
2
):
512
-
525
.
42.
Bowden
J
,
Davey Smith
G
,
Haycock
PC
,
Burgess
S
.
Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator
.
Genet Epidemiol
.
2016
;
40
(
4
):
304
-
314
.
43.
Bulik-Sullivan
BK
,
Loh
PR
,
Finucane
HK
, et al;
Schizophrenia Working Group of the Psychiatric Genomics Consortium
.
LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
.
Nat Genet
.
2015
;
47
(
3
):
291
-
295
.
44
Astle
WJ
,
Elding
H
,
Jiang
T
, et al
.
The allelic landscape of human blood cell trait variation and links to common complex disease.
Cell
.
2016
;
167
(
5
):
1415
-
1429.e19
.
45.
Coppinger
JA
,
Cagney
G
,
Toomey
S
, et al
.
Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions
.
Blood
.
2004
;
103
(
6
):
2096
-
2104
.
46.
Fröbel
J
,
Cadeddu
RP
,
Hartwig
S
, et al
.
Platelet proteome analysis reveals integrin-dependent aggregation defects in patients with myelodysplastic syndromes
.
Mol Cell Proteomics
.
2013
;
12
(
5
):
1272
-
1280
.
47.
Arita
K
,
South
AP
,
Hans-Filho
G
, et al
.
Oncostatin M receptor-beta mutations underlie familial primary localized cutaneous amyloidosis
.
Am J Hum Genet
.
2008
;
82
(
1
):
73
-
80
.
48.
Smith
NL
,
Chen
MH
,
Dehghan
A
, et al;
Wellcome Trust Case Control Consortium
.
Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium
.
Circulation
.
2010
;
121
(
12
):
1382
-
1392
.
49.
Smith
NL
,
Rice
KM
,
Bovill
EG
, et al
.
Genetic variation associated with plasma von Willebrand factor levels and the risk of incident venous thrombosis
.
Blood
.
2011
;
117
(
22
):
6007
-
6011
.
50.
Danjou
F
,
Zoledziewska
M
,
Sidore
C
, et al
.
Genome-wide association analyses based on whole-genome sequencing in Sardinia provide insights into regulation of hemoglobin levels
.
Nat Genet
.
2015
;
47
(
11
):
1264
-
1271
.
51.
van der Harst
P
,
Verweij
N
.
Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease
.
Circ Res
.
2018
;
122
(
3
):
433
-
443
.
52.
Yen
TL
,
Lu
WJ
,
Lien
LM
, et al
.
Amarogentin, a secoiridoid glycoside, abrogates platelet activation through PLC γ 2-PKC and MAPK pathways
.
BioMed Res Int
.
2014
;
2014
:
728019
.
53.
Eicher
JD
,
Chami
N
,
Kacprowski
T
, et al;
Myocardial Infarction Genetics Consortium
.
Platelet-related variants identified by exomechip meta-analysis in 157,293 individuals
.
Am J Hum Genet
.
2016
;
99
(
1
):
40
-
55
.
54.
Bertina
RM
,
Koeleman
BP
,
Koster
T
, et al
.
Mutation in blood coagulation factor V associated with resistance to activated protein C
.
Nature
.
1994
;
369
(
6475
):
64
-
67
.
55.
Smith
NL
,
Hindorff
LA
,
Heckbert
SR
, et al
.
Association of genetic variations with nonfatal venous thrombosis in postmenopausal women
.
JAMA
.
2007
;
297
(
5
):
489
-
498
.
56.
Buil
A
,
Trégouët
DA
,
Souto
JC
, et al
.
C4BPB/C4BPA is a new susceptibility locus for venous thrombosis with unknown protein S-independent mechanism: results from genome-wide association and gene expression analyses followed by case-control studies
.
Blood
.
2010
;
115
(
23
):
4644
-
4650
.
57.
Uitte de Willige
S
,
de Visser
MC
,
Houwing-Duistermaat
JJ
,
Rosendaal
FR
,
Vos
HL
,
Bertina
RM
.
Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma’ levels
.
Blood
.
2005
;
106
(
13
):
4176
-
4183
.
58.
Bezemer
ID
,
Bare
LA
,
Doggen
CJ
, et al
.
Gene variants associated with deep vein thrombosis
.
JAMA
.
2008
;
299
(
11
):
1306
-
1314
.
59.
Li
Y
,
Bezemer
ID
,
Rowland
CM
, et al
.
Genetic variants associated with deep vein thrombosis: the F11 locus
.
J Thromb Haemost
.
2009
;
7
(
11
):
1802
-
1808
.
60.
Jick
H
,
Slone
D
,
Westerholm
B
, et al
.
Venous thromboembolic disease and ABO blood type. A cooperative study
.
Lancet
.
1969
;
1
(
7594
):
539
-
542
.
61.
Dennis
J
,
Johnson
CY
,
Adediran
AS
, et al
.
The endothelial protein C receptor (PROCR) Ser219Gly variant and risk of common thrombotic disorders: a HuGE review and meta-analysis of evidence from observational studies
.
Blood
.
2012
;
119
(
10
):
2392
-
2400
.
62.
Germain
M
,
Saut
N
,
Greliche
N
, et al
.
Genetics of venous thrombosis: insights from a new genome wide association study
.
PLoS One
.
2011
;
6
(
9
):
e25581
.
63.
Schneppenheim
R
,
Hellermann
N
,
Brehm
MA
, et al
.
The von Willebrand factor Tyr2561 allele is a gain-of-function variant and a risk factor for early myocardial infarction
.
Blood
.
2019
;
133
(
4
):
356
-
365
.
64.
Hanson
E
,
Nilsson
S
,
Jood
K
, et al
.
Genetic variants of coagulation factor XI show association with ischemic stroke up to 70 years of age
.
PLoS One
.
2013
;
8
(
9
):
e75286
.
65.
Austin
H
,
De Staercke
C
,
Lally
C
,
Bezemer
ID
,
Rosendaal
FR
,
Hooper
WC
.
New gene variants associated with venous thrombosis: a replication study in White and Black Americans
.
J Thromb Haemost
.
2011
;
9
(
3
):
489
-
495
.
66.
Morange
PE
,
Oudot-Mellakh
T
,
Cohen
W
, et al
.
KNG1 Ile581Thr and susceptibility to venous thrombosis
.
Blood
.
2011
;
117
(
13
):
3692
-
3694
.
67.
Wells
PS
,
Anderson
JL
,
Scarvelis
DK
,
Doucette
SP
,
Gagnon
F
.
Factor XIII Val34Leu variant is protective against venous thromboembolism: a HuGE review and meta-analysis
.
Am J Epidemiol
.
2006
;
164
(
2
):
101
-
109
.
68.
Morange
PE
,
Bezemer
I
,
Saut
N
, et al
.
A follow-up study of a genome-wide association scan identifies a susceptibility locus for venous thrombosis on chromosome 6p24.1
.
Am J Hum Genet
.
2010
;
86
(
4
):
592
-
595
.
69.
Tsantes
AE
,
Nikolopoulos
GK
,
Bagos
PG
, et al
.
Association between the plasminogen activator inhibitor-1 4G/5G polymorphism and venous thrombosis. A meta-analysis
.
Thromb Haemost
.
2007
;
97
(
6
):
907
-
913
.
70.
Gohil
R
,
Peck
G
,
Sharma
P
.
The genetics of venous thromboembolism. A meta-analysis involving approximately 120,000 cases and 180,000 controls
.
Thromb Haemost
.
2009
;
102
(
2
):
360
-
370
.
71.
Morange
PE
,
Saut
N
,
Antoni
G
,
Emmerich
J
,
Trégouët
DA
.
Impact on venous thrombosis risk of newly discovered gene variants associated with FVIII and VWF plasma levels
.
J Thromb Haemost
.
2011
;
9
(
1
):
229
-
231
.
72.
Bezemer
ID
,
Arellano
AR
,
Tong
CH
, et al
.
F9 Malmö, factor IX and deep vein thrombosis
.
Haematologica
.
2009
;
94
(
5
):
693
-
699
.
73.
Hernandez
W
,
Gamazon
ER
,
Smithberger
E
, et al
.
Novel genetic predictors of venous thromboembolism risk in African Americans
.
Blood
.
2016
;
127
(
15
):
1923
-
1929
.
74.
Kirino
Y
,
Bertsias
G
,
Ishigatsubo
Y
, et al
.
Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1
.
Nat Genet
.
2013
;
45
(
2
):
202
-
207
.
75.
Tsoi
LC
,
Spain
SL
,
Knight
J
, et al;
Wellcome Trust Case Control Consortium 2
.
Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity
.
Nat Genet
.
2012
;
44
(
12
):
1341
-
1348
.
76.
International Genetics of Ankylosing Spondylitis Consortium (IGAS)
;
Cortes
A
,
Hadler
J
,
Pointon
JP
, et al
.
Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci
.
Nat Genet
.
2013
;
45
(
7
):
730
-
738
.
77.
Ungprasert
P
,
Sanguankeo
A
,
Upala
S
,
Suksaranjit
P
.
Psoriasis and risk of venous thromboembolism: a systematic review and meta-analysis
.
QJM
.
2014
;
107
(
10
):
793
-
797
.
78.
Yazici
H
,
Fresko
I
,
Yurdakul
S
.
Behçet’s syndrome: disease manifestations, management, and advances in treatment
.
Nat Clin Pract Rheumatol
.
2007
;
3
(
3
):
148
-
155
.
79.
Eriksson
JK
,
Jacobsson
L
,
Bengtsson
K
,
Askling
J
.
Is ankylosing spondylitis a risk factor for cardiovascular disease, and how do these risks compare with those in rheumatoid arthritis?
Ann Rheum Dis
.
2017
;
76
(
2
):
364
-
370
.
80.
Lee
EJ
,
Dykas
DJ
,
Leavitt
AD
, et al
.
Whole-exome sequencing in evaluation of patients with venous thromboembolism
.
Blood Adv
.
2017
;
1
(
16
):
1224
-
1237
.
81.
Malik
R
,
Chauhan
G
,
Traylor
M
, et al;
MEGASTROKE Consortium
.
Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes [published correction appears in Nat Genet. 2019;51(7):1192-1193]
Nat Genet
.
2018
;
50
(
4
):
524
-
537
.
82.
Ellinghaus
D
,
Jostins
L
,
Spain
SL
, et al;
Psoriasis Association Genetics Extension (PAGE)
.
Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci
.
Nat Genet
.
2016
;
48
(
5
):
510
-
518
.
83.
Bucciarelli
P
,
Maino
A
,
Felicetta
I
, et al
.
Association between red cell distribution width and risk of venous thromboembolism
.
Thromb Res
.
2015
;
136
(
3
):
590
-
594
.
84.
Ellingsen
TS
,
Lappegård
J
,
Skjelbakken
T
,
Brækkan
SK
,
Hansen
JB
.
Red cell distribution width is associated with incident venous thromboembolism (VTE) and case-fatality after VTE in a general population
.
Thromb Haemost
.
2015
;
113
(
1
):
193
-
200
.
85.
Rezende
SM
,
Lijfering
WM
,
Rosendaal
FR
,
Cannegieter
SC
.
Hematologic variables and venous thrombosis: red cell distribution width and blood monocyte count are associated with an increased risk
.
Haematologica
.
2014
;
99
(
1
):
194
-
200
.
86.
Gieger
C
,
Radhakrishnan
A
,
Cvejic
A
, et al
.
New gene functions in megakaryopoiesis and platelet formation
.
Nature
.
2011
;
480
(
7376
):
201
-
208
.
87.
Koupenova
M
,
Clancy
L
,
Corkrey
HA
,
Freedman
JE
.
Circulating platelets as mediators of immunity, inflammation, and thrombosis
.
Circ Res
.
2018
;
122
(
2
):
337
-
351
.
88.
Byrnes
JR
,
Wolberg
AS
.
Red blood cells in thrombosis
.
Blood
.
2017
;
130
(
16
):
1795
-
1799
.
89.
De Stefano
V
,
Rossi
E
.
Testing for inherited thrombophilia and consequences for antithrombotic prophylaxis in patients with venous thromboembolism and their relatives. A review of the Guidelines from Scientific Societies and Working Groups
.
Thromb Haemost
.
2013
;
110
(
4
):
697
-
705
.
90.
Hall
S
.
Venous thromboembolism prophylaxis after hip or knee arthroplasty
.
N Engl J Med
.
2018
;
378
(
19
):
1848
.
91.
Marik
PE
,
Cavallazzi
R
.
Extended anticoagulant and aspirin treatment for the secondary prevention of thromboembolic disease: a systematic review and meta-analysis
.
PLoS One
.
2015
;
10
(
11
):
e0143252
.
92.
Lin
DY
,
Zeng
D
.
Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data
.
Genet Epidemiol
.
2010
;
34
(
1
):
60
-
66
.
93.
Heit
JA
,
Armasu
SM
,
McCauley
BM
, et al
.
Identification of unique venous thromboembolism-susceptibility variants in African-Americans
.
Thromb Haemost
.
2017
;
117
(
4
):
758
-
768
.
You do not currently have access to this content.