Key Points

  • We investigated all 3 subtypes of BL by WGS and transcriptome sequencing.

  • Experimental validation through CRISPR screening and mouse models provides a better functional understanding of BL genetic drivers.

Abstract

Burkitt lymphoma (BL) is an aggressive, MYC-driven lymphoma comprising 3 distinct clinical subtypes: sporadic BLs that occur worldwide, endemic BLs that occur predominantly in sub-Saharan Africa, and immunodeficiency-associated BLs that occur primarily in the setting of HIV. In this study, we comprehensively delineated the genomic basis of BL through whole-genome sequencing (WGS) of 101 tumors representing all 3 subtypes of BL to identify 72 driver genes. These data were additionally informed by CRISPR screens in BL cell lines to functionally annotate the role of oncogenic drivers. Nearly every driver gene was found to have both coding and non-coding mutations, highlighting the importance of WGS for identifying driver events. Our data implicate coding and non-coding mutations in IGLL5, BACH2, SIN3A, and DNMT1. Epstein-Barr virus (EBV) infection was associated with higher mutation load, with type 1 EBV showing a higher mutational burden than type 2 EBV. Although sporadic and immunodeficiency-associated BLs had similar genetic profiles, endemic BLs manifested more frequent mutations in BCL7A and BCL6 and fewer genetic alterations in DNMT1, SNTB2, and CTCF. Silencing mutations in ID3 were a common feature of all 3 subtypes of BL. In vitro, mass spectrometry–based proteomics demonstrated that the ID3 protein binds primarily to TCF3 and TCF4. In vivo knockout of ID3 potentiated the effects of MYC, leading to rapid tumorigenesis and tumor phenotypes consistent with those observed in the human disease.

REFERENCES

REFERENCES
1.
Love
C
,
Sun
Z
,
Jima
D
, et al
.
The genetic landscape of mutations in Burkitt lymphoma
.
Nat Genet
.
2012
;
44
(
12
):
1321
-
1325
.
2.
Richter
J
,
Schlesner
M
,
Hoffmann
S
, et al;
ICGC MMML-Seq Project
.
Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing
.
Nat Genet
.
2012
;
44
(
12
):
1316
-
1320
.
3.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
4.
Kaymaz
Y
,
Oduor
CI
,
Yu
H
, et al
.
Comprehensive transcriptome and mutational profiling of endemic Burkitt lymphoma reveals EBV type-specific differences
.
Mol Cancer Res
.
2017
;
15
(
5
):
563
-
576
.
5.
Bolger
AM
,
Lohse
M
,
Usadel
B
.
Trimmomatic: a flexible trimmer for Illumina sequence data
.
Bioinformatics
.
2014
;
30
(
15
):
2114
-
2120
.
6.
Li
H
,
Durbin
R
.
Fast and accurate long-read alignment with Burrows-Wheeler transform
.
Bioinformatics
.
2010
;
26
(
5
):
589
-
595
.
7.
Cibulskis
K
,
Lawrence
MS
,
Carter
SL
, et al
.
Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
.
Nat Biotechnol
.
2013
;
31
(
3
):
213
-
219
.
8.
Yang
H
,
Wang
K
.
Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR
.
Nat Protoc
.
2015
;
10
(
10
):
1556
-
1566
.
9.
Dobin
A
,
Davis
CA
,
Schlesinger
F
, et al
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics
.
2013
;
29
(
1
):
15
-
21
.
10.
Li
B
,
Dewey
CN
.
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
.
BMC Bioinformatics
.
2011
;
12
(
1
):
323
.
11.
Rausch
T
,
Zichner
T
,
Schlattl
A
,
Stütz
AM
,
Benes
V
,
Korbel
JO
.
DELLY: structural variant discovery by integrated paired-end and split-read analysis
.
Bioinformatics
.
2012
;
28
(
18
):
i333
-
i339
.
12.
Buchfink
B
,
Xie
C
,
Huson
DH
.
Fast and sensitive protein alignment using DIAMOND
.
Nat Methods
.
2015
;
12
(
1
):
59
-
60
.
13.
Hast
BE
,
Goldfarb
D
,
Mulvaney
KM
, et al
.
Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination
.
Cancer Res
.
2013
;
73
(
7
):
2199
-
2210
.
14.
Mulvaney
KM
,
Matson
JP
,
Siesser
PF
, et al
.
Identification and characterization of MCM3 as a Kelch-like ECH-associated protein 1 (KEAP1) substrate
.
J Biol Chem
.
2016
;
291
(
45
):
23719
-
23733
.
15.
Kim
HJ
,
Lin
D
,
Lee
HJ
,
Li
M
,
Liebler
DC
.
Quantitative profiling of protein tyrosine kinases in human cancer cell lines by multiplexed parallel reaction monitoring assays
.
Mol Cell Proteomics
.
2016
;
15
(
2
):
682
-
691
.
16.
Lawrence
MS
,
Stojanov
P
,
Polak
P
, et al
.
Mutational heterogeneity in cancer and the search for new cancer-associated genes
.
Nature
.
2013
;
499
(
7457
):
214
-
218
.
17.
Reddy
A
,
Zhang
J
,
Davis
NS
, et al
.
Genetic and functional drivers of diffuse large B cell lymphoma
.
Cell
.
2017
;
171
(
2
):
481
-
494.e15
.
18.
Gu
Z
,
Gu
L
,
Eils
R
,
Schlesner
M
,
Brors
B
.
circlize implements and enhances circular visualization in R
.
Bioinformatics
.
2014
;
30
(
19
):
2811
-
2812
.
19.
Jiang
Y
,
Soong
TD
,
Wang
L
,
Melnick
AM
,
Elemento
O
.
Genome-wide detection of genes targeted by non-Ig somatic hypermutation in lymphoma
.
PLoS One
.
2012
;
7
(
7
):
e40332
.
20.
Arthur
SE
,
Jiang
A
,
Grande
BM
, et al
.
Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma
.
Nat Commun
.
2018
;
9
(
1
):
4001
.
21.
Zhang
J
,
Jima
D
,
Moffitt
AB
, et al
.
The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells
.
Blood
.
2014
;
123
(
19
):
2988
-
2996
.
22.
Alexandrov
LB
,
Nik-Zainal
S
,
Wedge
D
, et al
.
Signatures of mutational processes in human cancer
.
Nature
.
2013
;
500
:
415
-
421
.
23.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
24.
Yu
G
,
He
QY
.
ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization
.
Mol Biosyst
.
2016
;
12
(
2
):
477
-
479
.
25.
Shalem
O
,
Sanjana
NE
,
Hartenian
E
, et al
.
Genome-scale CRISPR-Cas9 knockout screening in human cells
.
Science
.
2014
;
343
(
6166
):
84
-
87
.
26.
Wang
T
,
Birsoy
K
,
Hughes
NW
, et al
.
Identification and characterization of essential genes in the human genome
.
Science
.
2015
;
350
(
6264
):
1096
-
1101
.
27.
Schmitz
R
,
Young
RM
,
Ceribelli
M
, et al
.
Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics
.
Nature
.
2012
;
490
(
7418
):
116
-
120
.
28.
Rempel
RE
,
Jiang
X
,
Fullerton
P
, et al
.
Utilization of the Eμ-Myc mouse to model heterogeneity of therapeutic response
.
Mol Cancer Ther
.
2014
;
13
(
12
):
3219
-
3229
.
You do not currently have access to this content.