Key Points

  • Low iron in the environment promotes megakaryocytic commitment of MEPs.

  • MEPs from mice with iron deficiency anemia show decreased proliferation and decreased ERK phosphorylation.

Abstract

The mechanisms underlying thrombocytosis in patients with iron deficiency anemia remain unknown. Here, we present findings that support the hypothesis that low iron biases the commitment of megakaryocytic (Mk)-erythroid progenitors (MEPs) toward the Mk lineage in both human and mouse. In MEPs of transmembrane serine protease 6 knockout (Tmprss6−/−) mice, which exhibit iron deficiency anemia and thrombocytosis, we observed a Mk bias, decreased labile iron, and decreased proliferation relative to wild-type (WT) MEPs. Bone marrow transplantation assays suggest that systemic iron deficiency, rather than a local role for Tmprss6−/− in hematopoietic cells, contributes to the MEP lineage commitment bias observed in Tmprss6−/− mice. Nontransgenic mice with acquired iron deficiency anemia also show thrombocytosis and Mk-biased MEPs. Gene expression analysis reveals that messenger RNAs encoding genes involved in metabolic, vascular endothelial growth factor, and extracellular signal-regulated kinase (ERK) pathways are enriched in Tmprss6−/− vs WT MEPs. Corroborating our findings from the murine models of iron deficiency anemia, primary human MEPs exhibit decreased proliferation and Mk-biased commitment after knockdown of transferrin receptor 2, a putative iron sensor. Signal transduction analyses reveal that both human and murine MEP have lower levels of phospho-ERK1/2 in iron-deficient conditions compared with controls. These data are consistent with a model in which low iron in the marrow environment affects MEP metabolism, attenuates ERK signaling, slows proliferation, and biases MEPs toward Mk lineage commitment.

REFERENCES

REFERENCES
1.
Miller
JL
.
Iron deficiency anemia: a common and curable disease
.
Cold Spring Harb Perspect Med
.
2013
;
3
(
7
):
a011866
.
2.
Dan
K
.
Thrombocytosis in iron deficiency anemia
.
Intern Med
.
2005
;
44
(
10
):
1025
-
1026
.
3.
Ganz
T
,
Nemeth
E
.
Hepcidin and iron homeostasis
.
Biochim Biophys Acta
.
2012
;
1823
(
9
):
1434
-
1443
.
4.
Finberg
KE
,
Heeney
MM
,
Campagna
DR
, et al
.
Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA)
.
Nat Genet
.
2008
;
40
(
5
):
569
-
571
.
5.
Du
X
,
She
E
,
Gelbart
T
, et al
.
The serine protease TMPRSS6 is required to sense iron deficiency
.
Science
.
2008
;
320
(
5879
):
1088
-
1092
.
6.
Folgueras
AR
,
de Lara
FM
,
Pendás
AM
, et al
.
Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis
.
Blood
.
2008
;
112
(
6
):
2539
-
2545
.
7.
Hooper
JD
,
Campagnolo
L
,
Goodarzi
G
,
Truong
TN
,
Stuhlmann
H
,
Quigley
JP
.
Mouse matriptase-2: identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues
.
Biochem J
.
2003
;
373
(
Pt 3
):
689
-
702
.
8.
Dahl
NV
,
Henry
DH
,
Coyne
DW
.
Thrombosis with erythropoietic stimulating agents-does iron-deficient erythropoiesis play a role?
Semin Dial
.
2008
;
21
(
3
):
210
-
211
.
9.
Soto
AF
,
Ford
P
,
Mastoris
J
.
Thrombocytosis in iron deficiency anemia: what the primary care physician needs to know [abstract]
.
Blood
.
2006
;
108
(
11
).
Abstract 3723
.
10.
Racke
FK
.
EPO and TPO sequences do not explain thrombocytosis in iron deficiency anemia
.
J Pediatr Hematol Oncol
.
2003
;
25
(
11
):
919
;
author reply 920
.
11.
Geddis
AE
,
Kaushansky
K
.
Cross-reactivity between erythropoietin and thrombopoietin at the level of Mpl does not account for the thrombocytosis seen in iron deficiency
.
J Pediatr Hematol Oncol
.
2003
;
25
(
11
):
919
-
920
,
author reply 920
.
12.
Evstatiev
R
,
Bukaty
A
,
Jimenez
K
, et al
.
Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin
.
Am J Hematol
.
2014
;
89
(
5
):
524
-
529
.
13.
Jimenez
K
,
Khare
V
,
Evstatiev
R
, et al
.
Increased expression of HIF2α during iron deficiency-associated megakaryocytic differentiation
.
J Thromb Haemost
.
2015
;
13
(
6
):
1113
-
1127
.
14.
Xavier-Ferrucio
J
,
Krause
DS
.
Concise review: bipotent megakaryocytic-erythroid progenitors: concepts and controversies
.
Stem Cells
.
2018
;
36
(
8
):
1138
-
1145
.
15.
Finberg
KE
,
Whittlesey
RL
,
Fleming
MD
,
Andrews
NC
.
Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis
.
Blood
.
2010
;
115
(
18
):
3817
-
3826
.
16.
International Council for Standardization in Haematology Expert Panel on CytometryInternational Society of Laboratory Hematology Task Force on Platelet Counting
.
Platelet counting by the RBC/platelet ratio method. A reference method
.
Am J Clin Pathol
.
2001
;
115
(
3
):
460
-
464
.
17.
Sanada
C
,
Xavier-Ferrucio
J
,
Lu
YC
, et al
.
Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction
.
Blood
.
2016
;
128
(
7
):
923
-
933
.
18.
Xavier-Ferrucio
J
,
Ricon
L
,
Vieira
K
, et al
.
Hematopoietic defects in response to reduced Arhgap21
.
Stem Cell Res (Amst)
.
2018
;
26
:
17
-
27
.
19.
Pronk
CJ
,
Rossi
DJ
,
Månsson
R
, et al
.
Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
.
Cell Stem Cell
.
2007
;
1
(
4
):
428
-
442
.
20.
Smith
EC
,
Thon
JN
,
Devine
MT
, et al
.
MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation
.
Blood
.
2012
;
120
(
11
):
2317
-
2329
.
21.
Kakhlon
O
,
Cabantchik
ZI
.
The labile iron pool: characterization, measurement, and participation in cellular processes(1)
.
Free Radic Biol Med
.
2002
;
33
(
8
):
1037
-
1046
.
22.
Lu
YC
,
Sanada
C
,
Xavier-Ferrucio
J
, et al
.
The molecular signature of megakaryocyte-erythroid progenitors reveals a role for the cell cycle in fate specification [published correction appears in Cell Rep. 2018;25(11):3229]
.
Cell Reports
.
2018
;
25
(
11
):
3229
.
23.
De Falco
L
,
Silvestri
L
,
Kannengiesser
C
, et al
.
Functional and clinical impact of novel TMPRSS6 variants in iron-refractory iron-deficiency anemia patients and genotype-phenotype studies
.
Hum Mutat
.
2014
;
35
(
11
):
1321
-
1329
.
24.
Mayo
MM
,
Samuel
SM
.
Iron deficiency anemia due to a defect in iron metabolism: a case report
.
Clin Lab Sci
.
2001
;
14
(
3
):
135
-
138
.
25.
Hartman
KR
,
Barker
JA
.
Microcytic anemia with iron malabsorption: an inherited disorder of iron metabolism
.
Am J Hematol
.
1996
;
51
(
4
):
269
-
275
.
26.
Camaschella
C
,
Pagani
A
,
Nai
A
,
Silvestri
L
.
The mutual control of iron and erythropoiesis
.
Int J Lab Hematol
.
2016
;
38
(
suppl 1
):
20
-
26
.
27.
Zhou
L
,
Zhao
B
,
Zhang
L
, et al
.
Alterations in cellular iron metabolism provide more therapeutic opportunities for cancer
.
Int J Mol Sci
.
2018
;
19
(
5
):
E1545
.
28.
Robb
A
,
Wessling-Resnick
M
.
Regulation of transferrin receptor 2 protein levels by transferrin
.
Blood
.
2004
;
104
(
13
):
4294
-
4299
.
29.
Johnson
MB
,
Enns
CA
.
Diferric transferrin regulates transferrin receptor 2 protein stability
.
Blood
.
2004
;
104
(
13
):
4287
-
4293
.
30.
Johnson
MB
,
Chen
J
,
Murchison
N
,
Green
FA
,
Enns
CA
.
Transferrin receptor 2: evidence for ligand-induced stabilization and redirection to a recycling pathway
.
Mol Biol Cell
.
2007
;
18
(
3
):
743
-
754
.
31.
Forejtnikovà
H
,
Vieillevoye
M
,
Zermati
Y
, et al
.
Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis
.
Blood
.
2010
;
116
(
24
):
5357
-
5367
.
32.
Worthen
CA
,
Enns
CA
.
The role of hepatic transferrin receptor 2 in the regulation of iron homeostasis in the body
.
Front Pharmacol
.
2014
;
5
:
34
.
33.
Nai
A
,
Lidonnici
MR
,
Rausa
M
, et al
.
The second transferrin receptor regulates red blood cell production in mice
.
Blood
.
2015
;
125
(
7
):
1170
-
1179
.
34.
Calzolari
A
,
Raggi
C
,
Deaglio
S
, et al
.
TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway
.
J Cell Sci
.
2006
;
119
(
Pt 21
):
4486
-
4498
.
35.
Wallace
DF
,
Summerville
L
,
Crampton
EM
,
Frazer
DM
,
Anderson
GJ
,
Subramaniam
VN
.
Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload
.
Hepatology
.
2009
;
50
(
6
):
1992
-
2000
.
36.
Fichelson
S
,
Freyssinier
JM
,
Picard
F
, et al
.
Megakaryocyte growth and development factor-induced proliferation and differentiation are regulated by the mitogen-activated protein kinase pathway in primitive cord blood hematopoietic progenitors
.
Blood
.
1999
;
94
(
5
):
1601
-
1613
.
37.
Tusi
BK
,
Wolock
SL
,
Weinreb
C
, et al
.
Population snapshots predict early haematopoietic and erythroid hierarchies
.
Nature
.
2018
;
555
(
7694
):
54
-
60
.
38.
Silvestri
L
,
Nai
A
,
Pagani
A
,
Camaschella
C
.
The extrahepatic role of TFR2 in iron homeostasis
.
Front Pharmacol
.
2014
;
5
:
93
.
39.
Rauner
M
,
Baschant
U
,
Roetto
A
, et al
.
Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signaling
.
Nat Metab
.
2019
;
1
(
1
):
111
-
124
.
40.
Séverin
S
,
Ghevaert
C
,
Mazharian
A
.
The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation
.
J Thromb Haemost
.
2010
;
8
(
1
):
17
-
26
.
41.
Nai
A
,
Rubio
A
,
Campanella
A
, et al
.
Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice
.
Blood
.
2016
;
127
(
19
):
2327
-
2336
.
42.
Simpson
RJ
,
McKie
AT
.
Iron and oxygen sensing: a tale of 2 interacting elements?
Metallomics
.
2015
;
7
(
2
):
223
-
231
.
43.
Narasimhan
P
,
Liu
J
,
Song
YS
,
Massengale
JL
,
Chan
PH
.
VEGF Stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions
.
Stroke
.
2009
;
40
(
4
):
1467
-
1473
.
44.
Sankaran
VG
,
Orkin
SH
.
Genome-wide association studies of hematologic phenotypes: a window into human hematopoiesis
.
Curr Opin Genet Dev
.
2013
;
23
(
3
):
339
-
344
.
You do not currently have access to this content.