Key Points

  • Identification of novel molecular regulators of HSC-niche interactions.

  • Provision of database to determine molecular interactions between any cell populations of mouse and human origin.

Abstract

A major limitation preventing in vivo modulation of hematopoietic stem cells (HSCs) is the incomplete understanding of the cellular and molecular support of the microenvironment in regulating HSC fate decisions. Consequently, murine HSCs cannot be generated, maintained, or expanded in culture over extended periods of time. A significantly improved understanding of the bone marrow niche environment and its molecular interactions with HSCs is pivotal to overcoming this challenge. We here prospectively isolated all major nonhematopoietic cellular niche components and cross-correlate them in detail with niche cells defined by lineage marking or tracing. Compiling an extensive database of soluble and membrane-bound ligand-receptor interactions, we developed a computational method to infer potential cell-to-cell interactions based on transcriptome data of sorter-purified niche cells and hematopoietic stem and progenitor cell subpopulations. Thus, we establish a compendium of the molecular communication between defined niche components and HSCs. Our analysis suggests an important role for cytokine antagonists in the regulation of HSC functions.

REFERENCES

REFERENCES
1.
Singh
AK
,
McGuirk
JP
.
Allogeneic stem cell transplantation: a historical and scientific overview
.
Cancer Res
.
2016
;
76
(
22
):
6445
-
6451
.
2.
Waskow
C
.
Maintaining what is already there: strategies to rectify HSC transplantation dilemmas
.
Cell Stem Cell
.
2015
;
17
(
3
):
258
-
259
.
3.
Dahlberg
A
,
Milano
F
.
Cord blood transplantation: rewind to fast forward
.
Bone Marrow Transplant
.
2017
;
52
(
6
):
799
-
802
.
4.
Kumar
S
,
Geiger
H
.
HSC niche biology and HSC expansion ex vivo
.
Trends Mol Med
.
2017
;
23
(
9
):
799
-
819
.
5.
Karamitros
D
,
Stoilova
B
,
Aboukhalil
Z
, et al
.
Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells
.
Nat Immunol
.
2018
;
19
(
1
):
85
-
97
.
6.
Crane
GM
,
Jeffery
E
,
Morrison
SJ
.
Adult haematopoietic stem cell niches
.
Nat Rev Immunol
.
2017
;
17
(
9
):
573
-
590
.
7.
Yu
VW
,
Scadden
DT
.
Heterogeneity of the bone marrow niche
.
Curr Opin Hematol
.
2016
;
23
(
4
):
331
-
338
.
8.
Calvi
LM
,
Adams
GB
,
Weibrecht
KW
, et al
.
Osteoblastic cells regulate the haematopoietic stem cell niche
.
Nature
.
2003
;
425
(
6960
):
841
-
846
.
9.
Zhang
J
,
Niu
C
,
Ye
L
, et al
.
Identification of the haematopoietic stem cell niche and control of the niche size
.
Nature
.
2003
;
425
(
6960
):
836
-
841
.
10.
Kollet
O
,
Dar
A
,
Shivtiel
S
, et al
.
Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells
.
Nat Med
.
2006
;
12
(
6
):
657
-
664
.
11.
Lymperi
S
,
Ersek
A
,
Ferraro
F
,
Dazzi
F
,
Horwood
NJ
.
Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo
.
Blood
.
2011
;
117
(
5
):
1540
-
1549
.
12.
Winkler
IG
,
Sims
NA
,
Pettit
AR
, et al
.
Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs
.
Blood
.
2010
;
116
(
23
):
4815
-
4828
.
13.
Chow
A
,
Lucas
D
,
Hidalgo
A
, et al
.
Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche
.
J Exp Med
.
2011
;
208
(
2
):
261
-
271
.
14.
Christopher
MJ
,
Rao
M
,
Liu
F
,
Woloszynek
JR
,
Link
DC
.
Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice
.
J Exp Med
.
2011
;
208
(
2
):
251
-
260
.
15.
Bruns
I
,
Lucas
D
,
Pinho
S
, et al
.
Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion
.
Nat Med
.
2014
;
20
(
11
):
1315
-
1320
.
16.
Zhao
M
,
Perry
JM
,
Marshall
H
, et al
.
Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells
.
Nat Med
.
2014
;
20
(
11
):
1321
-
1326
.
17.
Nakamura-Ishizu
A
,
Takubo
K
,
Kobayashi
H
,
Suzuki-Inoue
K
,
Suda
T
.
CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow
.
J Exp Med
.
2015
;
212
(
12
):
2133
-
2146
.
18.
Ding
L
,
Saunders
TL
,
Enikolopov
G
,
Morrison
SJ
.
Endothelial and perivascular cells maintain haematopoietic stem cells
.
Nature
.
2012
;
481
(
7382
):
457
-
462
.
19.
Acar
M
,
Kocherlakota
KS
,
Murphy
MM
, et al
.
Deep imaging of bone marrow shows nondividing stem cells are mainly perisinusoidal
.
Nature
.
2015
;
526
(
7571
):
126
-
130
.
20.
Itkin
T
,
Gur-Cohen
S
,
Spencer
JA
, et al
.
Distinct bone marrow blood vessels differentially regulate haematopoiesis
.
Nature
.
2016
;
532
(
7599
):
323
-
328
.
21.
Winkler
IG
,
Barbier
V
,
Nowlan
B
, et al
.
Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance
.
Nat Med
.
2012
;
18
(
11
):
1651
-
1657
.
22.
Yamazaki
S
,
Ema
H
,
Karlsson
G
, et al
.
Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche
.
Cell
.
2011
;
147
(
5
):
1146
-
1158
.
23.
Katayama
Y
,
Battista
M
,
Kao
WM
, et al
.
Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow
.
Cell
.
2006
;
124
(
2
):
407
-
421
.
24.
Méndez-Ferrer
S
,
Lucas
D
,
Battista
M
,
Frenette
PS
.
Haematopoietic stem cell release is regulated by circadian oscillations
.
Nature
.
2008
;
452
(
7186
):
442
-
447
.
25.
Omatsu
Y
,
Sugiyama
T
,
Kohara
H
, et al
.
The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche
.
Immunity
.
2010
;
33
(
3
):
387
-
399
.
26.
Méndez-Ferrer
S
,
Michurina
TV
,
Ferraro
F
, et al
.
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
.
Nature
.
2010
;
466
(
7308
):
829
-
834
.
27.
Gao
X
,
Xu
C
,
Asada
N
,
Frenette
PS
.
The hematopoietic stem cell niche: from embryo to adult
.
Development
.
2018
;
145
(
2
):
28.
Graeber
TG
,
Eisenberg
D
.
Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles
.
Nat Genet
.
2001
;
29
(
3
):
295
-
300
.
29.
Ramilowski
JA
,
Goldberg
T
,
Harshbarger
J
, et al
.
A draft network of ligand-receptor-mediated multicellular signalling in human [published correction appears in Nat Commun. 2016;7:10706]
.
Nat Commun
.
2015
;
6
:
7866
.
30.
Srinivas
S
,
Watanabe
T
,
Lin
CS
, et al
.
Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus
.
BMC Dev Biol
.
2001
;
1
:
4
.
31.
Buch
T
,
Heppner
FL
,
Tertilt
C
, et al
.
A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration
.
Nat Methods
.
2005
;
2
(
6
):
419
-
426
.
32.
DeFalco
J
,
Tomishima
M
,
Liu
H
, et al
.
Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus
.
Science
.
2001
;
291
(
5513
):
2608
-
2613
.
33.
Logan
M
,
Martin
JF
,
Nagy
A
,
Lobe
C
,
Olson
EN
,
Tabin
CJ
.
Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer
.
Genesis
.
2002
;
33
(
2
):
77
-
80
.
34.
Rodda
SJ
,
McMahon
AP
.
Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors
.
Development
.
2006
;
133
(
16
):
3231
-
3244
.
35.
Luche
H
,
Weber
O
,
Nageswara Rao
T
,
Blum
C
,
Fehling
HJ
.
Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies
.
Eur J Immunol
.
2007
;
37
(
1
):
43
-
53
.
36.
Mignone
JL
,
Kukekov
V
,
Chiang
AS
,
Steindler
D
,
Enikolopov
G
.
Neural stem and progenitor cells in nestin-GFP transgenic mice
.
J Comp Neurol
.
2004
;
469
(
3
):
311
-
324
.
37.
Alva
JA
,
Zovein
AC
,
Monvoisin
A
, et al
.
VE-cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells
.
Dev Dyn
.
2006
;
235
(
3
):
759
-
767
.
38.
Ding
L
,
Morrison
SJ
.
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
.
Nature
.
2013
;
495
(
7440
):
231
-
235
.
39.
Arndt
K
,
Kranz
A
,
Fohgrub
J
, et al
.
SETD1A protects HSCs from activation-induced functional decline in vivo
.
Blood
.
2018
;
131
(
12
):
1311
-
1324
.
40.
Arndt
K
,
Grinenko
T
,
Mende
N
, et al
.
CD133 is a modifier of hematopoietic progenitor frequencies but is dispensable for the maintenance of mouse hematopoietic stem cells
.
Proc Natl Acad Sci USA
.
2013
;
110
(
14
):
5582
-
5587
.
41.
Morikawa
S
,
Mabuchi
Y
,
Kubota
Y
, et al
.
Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
.
J Exp Med
.
2009
;
206
(
11
):
2483
-
2496
.
42.
Ono
N
,
Ono
W
,
Mizoguchi
T
,
Nagasawa
T
,
Frenette
PS
,
Kronenberg
HM
.
Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage
.
Dev Cell
.
2014
;
29
(
3
):
330
-
339
.
43.
Hadjantonakis
AK
,
Gertsenstein
M
,
Ikawa
M
,
Okabe
M
,
Nagy
A
.
Noninvasive sexing of preimplantation stage mammalian embryos
.
Nat Genet
.
1998
;
19
(
3
):
220
-
222
.
44.
He
S
,
Kim
I
,
Lim
MS
,
Morrison
SJ
.
Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors
.
Genes Dev
.
2011
;
25
(
15
):
1613
-
1627
.
45.
Lynn
DJ
,
Winsor
GL
,
Chan
C
, et al
.
InnateDB: facilitating systems-level analyses of the mammalian innate immune response
.
Mol Syst Biol
.
2008
;
4
:
218
.
46.
Orchard
S
,
Ammari
M
,
Aranda
B
, et al
.
The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases
.
Nucleic Acids Res
.
2014
;
42
(
database issue
):
D358
-
D363
.
47.
Axelrod
H
,
Pienta
KJ
.
Axl as a mediator of cellular growth and survival
.
Oncotarget
.
2014
;
5
(
19
):
8818
-
8852
.
48.
Miller
LH
,
Qu
CK
,
Pauly
M
.
Germline mutations in the bone marrow microenvironment and dysregulated hematopoiesis
.
Exp Hematol
.
2018
;
66
:
17
-
26
.
49.
Raaijmakers
MH
,
Mukherjee
S
,
Guo
S
, et al
.
Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia
.
Nature
.
2010
;
464
(
7290
):
852
-
857
.
50.
Durand
C
,
Charbord
P
,
Jaffredo
T
.
The crosstalk between hematopoietic stem cells and their niches
.
Curr Opin Hematol
.
2018
;
25
(
4
):
285
-
289
.
51.
Zhao
M
,
Tao
F
,
Venkatraman
A
, et al
.
N-cadherin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells
.
Cell Rep
.
2019
;
26
(
3
):
652
-
669.e6
.
52.
Tjin
G
,
Flores-Figueroa
E
,
Duarte
D
, et al
.
Imaging methods used to study mouse and human HSC niches: Current and emerging technologies
.
Bone
.
2019
;
119
:
19
-
35
.
53.
Greenbaum
A
,
Hsu
YM
,
Day
RB
, et al
.
CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
.
Nature
.
2013
;
495
(
7440
):
227
-
230
.
54.
Smaldone
S
,
Bigarella
CL
,
Del Solar
M
,
Ghaffari
S
,
Ramirez
F
.
Fibrillin-1 microfibrils influence adult bone marrow hematopoiesis
.
Matrix Biol
.
2016
;
52-54
:
88
-
94
.
55.
Potocnik
AJ
,
Brakebusch
C
,
Fässler
R
.
Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow
.
Immunity
.
2000
;
12
(
6
):
653
-
663
.
56.
Cao
B
,
Zhang
Z
,
Grassinger
J
, et al
.
Therapeutic targeting and rapid mobilization of endosteal HSC using a small molecule integrin antagonist
.
Nat Commun
.
2016
;
7
:
11007
.
57.
Ellis
SL
,
Heazlewood
SY
,
Williams
B
, et al
.
The role of tenascin C in the lymphoid progenitor cell niche
.
Exp Hematol
.
2013
;
41
(
12
):
1050
-
1061
.
58.
Vento-Tormo
R
,
Efremova
M
,
Botting
RA
, et al
.
Single-cell reconstruction of the early maternal-fetal interface in humans
.
Nature
.
2018
;
563
(
7731
):
347
-
353
.
You do not currently have access to this content.