Key Points

  • CD10-ve PreProB-progenitors are the earliest fetal B-lymphoid–restricted progenitors and are enriched in fetal BM.

  • Fetal PreProB-progenitors have a unique ontogeny-related developmental gene expression program distinct from their rare adult counterparts.

Abstract

Human lymphopoiesis is a dynamic lifelong process that starts in utero 6 weeks postconception. Although fetal B-lymphopoiesis remains poorly defined, it is key to understanding leukemia initiation in early life. Here, we provide a comprehensive analysis of the human fetal B-cell developmental hierarchy. We report the presence in fetal tissues of 2 distinct CD19+ B-progenitors, an adult-type CD10+ve ProB-progenitor and a new CD10-ve PreProB-progenitor, and describe their molecular and functional characteristics. PreProB-progenitors and ProB-progenitors appear early in the first trimester in embryonic liver, followed by a sustained second wave of B-progenitor development in fetal bone marrow (BM), where together they form >40% of the total hematopoietic stem cell/progenitor pool. Almost one-third of fetal B-progenitors are CD10-ve PreProB-progenitors, whereas, by contrast, PreProB-progenitors are almost undetectable (0.53% ± 0.24%) in adult BM. Single-cell transcriptomics and functional assays place fetal PreProB-progenitors upstream of ProB-progenitors, identifying them as the first B-lymphoid–restricted progenitor in human fetal life. Although fetal BM PreProB-progenitors and ProB-progenitors both give rise solely to B-lineage cells, they are transcriptionally distinct. As with their fetal counterparts, adult BM PreProB-progenitors give rise only to B-lineage cells in vitro and express the expected B-lineage gene expression program. However, fetal PreProB-progenitors display a distinct, ontogeny-related gene expression pattern that is not seen in adult PreProB-progenitors, and they share transcriptomic signatures with CD10-ve B-progenitor infant acute lymphoblastic leukemia blast cells. These data identify PreProB-progenitors as the earliest B-lymphoid–restricted progenitor in human fetal life and suggest that this fetal-restricted committed B-progenitor might provide a permissive cellular context for prenatal B-progenitor leukemia initiation.

REFERENCES

REFERENCES
1.
Asma
GE
,
Langlois van den Bergh
R
,
Vossen
JM
.
Development of pre-B and B lymphocytes in the human fetus
.
Clin Exp Immunol
.
1984
;
56
(
2
):
407
-
414
.
2.
Bueno
C
,
van Roon
EH
,
Muñoz-López
A
, et al
.
Immunophenotypic analysis and quantification of B-1 and B-2 B cells during human fetal hematopoietic development
.
Leukemia
.
2016
;
30
(
7
):
1603
-
1606
.
3.
Uckun
FM
,
Ledbetter
JA
.
Immunobiologic differences between normal and leukemic human B-cell precursors
.
Proc Natl Acad Sci U S A
.
1988
;
85
(
22
):
8603
-
8607
.
4.
Nuñez
C
,
Nishimoto
N
,
Gartland
GL
, et al
.
B cells are generated throughout life in humans
.
J Immunol
.
1996
;
156
(
2
):
866
-
872
.
5.
Charbord
P
,
Tavian
M
,
Humeau
L
,
Péault
B
.
Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment
.
Blood
.
1996
;
87
(
10
):
4109
-
4119
.
6.
Grümayer
ER
,
Griesinger
F
,
Hummell
DS
,
Brunning
RD
,
Kersey
JH
.
Identification of novel B-lineage cells in human fetal bone marrow that coexpress CD7
.
Blood
.
1991
;
77
(
1
):
64
-
68
.
7.
Greaves
M
.
A causal mechanism for childhood acute lymphoblastic leukaemia [published correction appears in Nat Rev Cancer. 2018;18(8):526]
.
Nat Rev Cancer
.
2018
;
18
(
8
):
471
-
484
.
8.
Alhaj Hussen
K
,
Vu Manh
TP
,
Guimiot
F
, et al
.
Molecular and functional characterization of lymphoid progenitor subsets reveals a bipartite architecture of human lymphopoiesis
.
Immunity
.
2017
;
47
(
4
):
680
-
696.e8
.
9.
Böiers
C
,
Richardson
SE
,
Laycock
E
, et al
.
A human IPS model implicates embryonic B-myeloid fate restriction as developmental susceptibility to B acute lymphoblastic leukemia-associated ETV6-RUNX1
.
Dev Cell
.
2018
;
44
(
3
):
362
-
377.e7
.
10.
Haddad
R
,
Guimiot
F
,
Six
E
, et al
.
Dynamics of thymus-colonizing cells during human development
.
Immunity
.
2006
;
24
(
2
):
217
-
230
.
11.
Blom
B
,
Spits
H
.
Development of human lymphoid cells
.
Annu Rev Immunol
.
2006
;
24
(
1
):
287
-
320
.
12.
Sanz
E
,
Muñoz-A
N
,
Monserrat
J
, et al
.
Ordering human CD34+CD10-CD19+ pre/pro-B-cell and CD19- common lymphoid progenitor stages in two pro-B-cell development pathways
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
13
):
5925
-
5930
.
13.
Sanz
E
,
Alvarez-Mon
M
,
Martínez-A
C
,
de la Hera
A
.
Human cord blood CD34+Pax-5+ B-cell progenitors: single-cell analyses of their gene expression profiles
.
Blood
.
2003
;
101
(
9
):
3424
-
3430
.
14.
Roy
A
,
Cowan
G
,
Mead
AJ
, et al
.
Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
43
):
17579
-
17584
.
15.
Agraz-Doblas
A
,
Bueno
C
,
Bashford-Rogers
R
, et al
.
Unraveling the cellular origin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis
.
Haematologica
.
2019
;
104
(
6
):
1176
-
1188
.
16.
Andersson
AK
,
Ma
J
,
Wang
J
, et al;
St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project
.
The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias
.
Nat Genet
.
2015
;
47
(
4
):
330
-
337
.
17.
Awong
G
,
La Motte-Mohs
RN
,
Zúñiga-Pflücker
JC
.
In vitro human T cell development directed by notch-ligand interactions
.
Methods Mol Biol
.
2008
;
430
:
135
-
142
.
18.
Dominici
M
,
Le Blanc
K
,
Mueller
I
, et al
.
Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
.
Cytotherapy
.
2006
;
8
(
4
):
315
-
317
.
19.
Picelli
S
,
Faridani
OR
,
Björklund
AK
,
Winberg
G
,
Sagasser
S
,
Sandberg
R
.
Full-length RNA-seq from single cells using Smart-seq2
.
Nat Protoc
.
2014
;
9
(
1
):
171
-
181
.
20.
Psaila
B
,
Barkas
N
,
Iskander
D
, et al
.
Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways
.
Genome Biol
.
2016
;
17
(
1
):
83
.
21.
Angerer
P
,
Haghverdi
L
,
Büttner
M
,
Theis
FJ
,
Marr
C
,
Buettner
F
.
Destiny: diffusion maps for large-scale single-cell data in R
.
Bioinformatics
.
2016
;
32
(
8
):
1241
-
1243
.
22.
Haghverdi
L
,
Büttner
M
,
Wolf
FA
,
Buettner
F
,
Theis
FJ
.
Diffusion pseudotime robustly reconstructs lineage branching
.
Nat Methods
.
2016
;
13
(
10
):
845
-
848
.
23.
van Dongen
JJ
,
Langerak
AW
,
Brüggemann
M
, et al
.
Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936
.
Leukemia
.
2003
;
17
(
12
):
2257
-
2317
.
24.
Brochet
X
,
Lefranc
MP
,
Giudicelli
V
.
IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis
.
Nucleic Acids Res
.
2008
;
36
(
Web Server issue
):
W503
-
W508
.
25.
Corces
MR
,
Buenrostro
JD
,
Wu
B
, et al
.
Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution
.
Nat Genet
.
2016
;
48
(
10
):
1193
-
1203
.
26.
Buenrostro
JD
,
Wu
B
,
Chang
HY
,
Greenleaf
WJ
.
ATAC-seq: a method for assaying chromatin accessibility genome-wide
.
Curr Protoc Mol Biol
.
2015
;
109
:
21.29.1
-
9
.
27.
Roy
A
,
Bystry
V
,
Bohn
G
, et al
.
High resolution IgH repertoire analysis reveals fetal liver as the likely origin of life-long, innate B lymphopoiesis in humans
.
Clin Immunol
.
2017
;
183
:
8
-
16
.
28.
Bertrand
FE
III
,
Billips
LG
,
Burrows
PD
,
Gartland
GL
,
Kubagawa
H
,
Schroeder
HW
Jr
.
Ig D(H) gene segment transcription and rearrangement before surface expression of the pan-B-cell marker CD19 in normal human bone marrow
.
Blood
.
1997
;
90
(
2
):
736
-
744
.
29.
Hsu
CL
,
King-Fleischman
AG
,
Lai
AY
,
Matsumoto
Y
,
Weissman
IL
,
Kondo
M
.
Antagonistic effect of CCAAT enhancer-binding protein-alpha and Pax5 in myeloid or lymphoid lineage choice in common lymphoid progenitors
.
Proc Natl Acad Sci USA
.
2006
;
103
(
3
):
672
-
677
.
30.
Laurenti
E
,
Doulatov
S
,
Zandi
S
, et al
.
The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment
.
Nat Immunol
.
2013
;
14
(
7
):
756
-
763
.
31.
Armstrong
SA
,
Staunton
JE
,
Silverman
LB
, et al
.
MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
.
Nat Genet
.
2002
;
30
(
1
):
41
-
47
.
32.
Trentin
L
,
Giordan
M
,
Dingermann
T
,
Basso
G
,
Te Kronnie
G
,
Marschalek
R
.
Two independent gene signatures in pediatric t(4;11) acute lymphoblastic leukemia patients
.
Eur J Haematol
.
2009
;
83
(
5
):
406
-
419
.
33.
Kerry
J
,
Godfrey
L
,
Repapi
E
, et al
.
MLL-AF4 spreading identifies binding sites that are distinct from super-enhancers and that govern sensitivity to DOT1L inhibition in leukemia
.
Cell Reports
.
2017
;
18
(
2
):
482
-
495
.
34.
Torelli
GF
,
Peragine
N
,
Raponi
S
, et al
.
Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells
.
Haematologica
.
2014
;
99
(
7
):
1248
-
1254
.
35.
Montecino-Rodriguez
E
,
Fice
M
,
Casero
D
,
Berent-Maoz
B
,
Barber
CL
,
Dorshkind
K
.
Distinct genetic networks orchestrate the emergence of specific waves of fetal and adult B-1 and B-2 development
.
Immunity
.
2016
;
45
(
3
):
527
-
539
.
36.
Li
YS
,
Zhou
Y
,
Tang
L
,
Shinton
SA
,
Hayakawa
K
,
Hardy
RR
.
A developmental switch between fetal and adult B lymphopoiesis
.
Ann N Y Acad Sci
.
2015
;
1362
(
1
):
8
-
15
.
37.
Bardini
M
,
Woll
PS
,
Corral
L
, et al
.
Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement
.
Leukemia
.
2015
;
29
(
1
):
38
-
50
.
38.
Castor
A
,
Nilsson
L
,
Astrand-Grundström
I
, et al
.
Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia
.
Nat Med
.
2005
;
11
(
6
):
630
-
637
.
39.
Hotfilder
M
,
Röttgers
S
,
Rosemann
A
, et al
.
Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19- cells
.
Cancer Res
.
2005
;
65
(
4
):
1442
-
1449
.
40.
le Viseur
C
,
Hotfilder
M
,
Bomken
S
, et al
.
In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties
.
Cancer Cell
.
2008
;
14
(
1
):
47
-
58
.
41.
Malouf
C
,
Ottersbach
K
.
The fetal liver lymphoid-primed multipotent progenitor provides the prerequisites for the initiation of t(4;11) MLL-AF4 infant leukemia
.
Haematologica
.
2018
;
103
(
12
):
e571
-
e574
.
42.
Lin
S
,
Luo
RT
,
Shrestha
M
,
Thirman
MJ
,
Mulloy
JC
.
The full transforming capacity of MLL-Af4 is interlinked with lymphoid lineage commitment
.
Blood
.
2017
;
130
(
7
):
903
-
907
.
43.
Jansen
MW
,
Corral
L
,
van der Velden
VH
, et al
.
Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement
.
Leukemia
.
2007
;
21
(
4
):
633
-
641
.
44.
Kirkham
CM
,
Scott
JNF
,
Wang
X
, et al
.
Cut-and-run: a distinct mechanism by which V(D)J recombination causes genome instability
.
Mol Cell
.
2019
;
74
(
3
):
584
-
597.e9
.
45.
Papaemmanuil
E
,
Rapado
I
,
Li
Y
, et al
.
RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia
.
Nat Genet
.
2014
;
46
(
2
):
116
-
125
.
46.
Jiang
JG
,
Roman
E
,
Nandula
SV
,
Murty
VV
,
Bhagat
G
,
Alobeid
B
.
Congenital MLL-positive B-cell acute lymphoblastic leukemia (B-ALL) switched lineage at relapse to acute myelocytic leukemia (AML) with persistent t(4;11) and t(1;6) translocations and JH gene rearrangement
.
Leuk Lymphoma
.
2005
;
46
(
8
):
1223
-
1227
.
47.
Rossi
JG
,
Bernasconi
AR
,
Alonso
CN
, et al
.
Lineage switch in childhood acute leukemia: an unusual event with poor outcome
.
Am J Hematol
.
2012
;
87
(
9
):
890
-
897
.
48.
Sakaki
H
,
Kanegane
H
,
Nomura
K
, et al
.
Early lineage switch in an infant acute lymphoblastic leukemia
.
Int J Hematol
.
2009
;
90
(
5
):
653
-
655
.
You do not currently have access to this content.