Key Points

  • Blood donor, component, and recipient characteristics are significant predictors of hemoglobin increments after RBC transfusion.

  • Collectively, these factors account for the variation observed in practice and allow prediction of changes in hemoglobin with transfusion.

Abstract

Significant research has focused individually on blood donors, product preparation and storage, and optimal transfusion practice. To better understand the interplay between these factors on measures of red blood cell (RBC) transfusion efficacy, we conducted a linked analysis of blood donor and component data with patients who received single-unit RBC transfusions between 2008 and 2016. Hemoglobin levels before and after RBC transfusions and at 24- and 48-hour intervals after transfusion were analyzed. Generalized estimating equation linear regression models were fit to examine hemoglobin increments after RBC transfusion adjusting for donor and recipient demographic characteristics, collection method, additive solution, gamma irradiation, and storage duration. We linked data on 23 194 transfusion recipients who received one or more single-unit RBC transfusions (n = 38 019 units) to donor demographic and component characteristics. Donor and recipient sex, Rh-D status, collection method, gamma irradiation, recipient age and body mass index, and pretransfusion hemoglobin levels were significant predictors of hemoglobin increments in univariate and multivariable analyses (P < .01). For hemoglobin increments 24 hours after transfusion, the coefficient of determination for the generalized estimating equation models was 0.25, with an estimated correlation between actual and predicted values of 0.5. Collectively, blood donor demographic characteristics, collection and processing methods, and recipient characteristics accounted for significant variation in hemoglobin increments related to RBC transfusion. Multivariable modeling allows the prediction of changes in hemoglobin using donor-, component-, and patient-level characteristics. Accounting for these factors will be critical for future analyses of donor and component factors, including genetic polymorphisms, on posttransfusion increments and other patient outcomes.

REFERENCES

REFERENCES
1.
Ning
S
,
Heddle
NM
,
Acker
JP
.
Exploring donor and product factors and their impact on red cell post-transfusion outcomes
.
Transfus Med Rev
.
2018
;
32
(
1
):
28
-
35
.
2.
Kanias
T
,
Gladwin
MT
.
Nitric oxide, hemolysis, and the red blood cell storage lesion: interactions between transfusion, donor, and recipient
.
Transfusion
.
2012
;
52
(
7
):
1388
-
1392
.
3.
Chassé
M
,
Tinmouth
A
,
English
SW
, et al
.
Association of blood donor age and sex with recipient survival after red blood cell transfusion
.
JAMA Intern Med
.
2016
;
176
(
9
):
1307
-
1314
.
4.
Vasan
SK
,
Chiesa
F
,
Rostgaard
K
, et al
.
Lack of association between blood donor age and survival of transfused patients
.
Blood
.
2016
;
127
(
5
):
658
-
661
.
5.
Heddle
NM
,
Cook
RJ
,
Liu
Y
, et al
.
The association between blood donor sex and age and transfusion recipient mortality: an exploratory analysis
.
Transfusion
.
2019
;
59
(
2
):
482
-
491
.
6.
Edgren
G
,
Murphy
EL
,
Brambilla
DJ
, et al;
NHLBI Recipient Epidemiology and Donor Evaluation Study-III (REDS-III) Group
.
Association of blood donor sex and prior pregnancy with mortality among red blood cell transfusion recipients
.
JAMA
.
2019
;
321
(
22
):
2183
-
2192
.
7.
Acker
JP
,
Marks
DC
,
Sheffield
WP
.
Quality assessment of established and emerging blood components for transfusion
.
J Blood Transfus
.
2016
;
2016
:
4860284
.
8.
Almizraq
RJ
,
Norris
PJ
,
Inglis
H
, et al
.
Blood manufacturing methods affect red blood cell product characteristics and immunomodulatory activity
.
Blood Adv
.
2018
;
2
(
18
):
2296
-
2306
.
9.
Kleinman
S
,
Busch
MP
,
Murphy
EL
,
Shan
H
,
Ness
P
,
Glynn
SA
;
National Heart, Lung, and Blood Institute Recipient Epidemiology and Donor Evaluation Study (REDS-III)
.
The National Heart, Lung, and Blood Institute Recipient Epidemiology and Donor Evaluation Study (REDS-III): a research program striving to improve blood donor and transfusion recipient outcomes
.
Transfusion
.
2014
;
54
(
3 pt 2
):
942
-
955
.
10.
Kleinman
S
,
Glynn
SA
.
Database research in transfusion medicine: the power of large numbers
.
Transfusion
.
2015
;
55
(
7
):
1591
-
1595
.
11.
Edgren
G
,
Rostgaard
K
,
Vasan
SK
, et al
.
The new Scandinavian Donations and Transfusions database (SCANDAT2): a blood safety resource with added versatility
.
Transfusion
.
2015
;
55
(
7
):
1600
-
1606
.
12.
Kanias
T
,
Lanteri
MC
,
Page
GP
, et al
.
Ethnicity, sex, and age are determinants of red blood cell storage and stress hemolysis: results of the REDS-III RBC-Omics study
.
Blood Adv
.
2017
;
1
(
15
):
1132
-
1141
.
13.
Kanias
T
,
Sinchar
D
,
Osei-Hwedieh
D
, et al
.
Testosterone-dependent sex differences in red blood cell hemolysis in storage, stress, and disease
.
Transfusion
.
2016
;
56
(
10
):
2571
-
2583
.
14.
Bakkour
S
,
Acker
JP
,
Chafets
DM
, et al
.
Manufacturing method affects mitochondrial DNA release and extracellular vesicle composition in stored red blood cells
.
Vox Sang
.
2016
;
111
(
1
):
22
-
32
.
15.
Hansen
AL
,
Kurach
JD
,
Turner
TR
, et al
.
The effect of processing method on the in vitro characteristics of red blood cell products
.
Vox Sang
.
2015
;
108
(
4
):
350
-
358
.
16.
Harm
SK
,
Raval
JS
,
Cramer
J
,
Waters
JH
,
Yazer
MH
.
Haemolysis and sublethal injury of RBCs after routine blood bank manipulations
.
Transfus Med
.
2012
;
22
(
3
):
181
-
185
.
17.
Antonelou
MH
,
Seghatchian
J
.
Insights into red blood cell storage lesion: toward a new appreciation
.
Transfus Apheresis Sci
.
2016
;
55
(
3
):
292
-
301
.
18.
Hod
EA
,
Brittenham
GM
,
Billote
GB
, et al
.
Transfusion of human volunteers with older, stored red blood cells produces extravascular hemolysis and circulating non-transferrin-bound iron
.
Blood
.
2011
;
118
(
25
):
6675
-
6682
.
19.
Rapido
F
,
Brittenham
GM
,
Bandyopadhyay
S
, et al
.
Prolonged red cell storage before transfusion increases extravascular hemolysis
.
J Clin Invest
.
2017
;
127
(
1
):
375
-
382
.
20.
Murphy
EL
,
Kwaan
N
,
Looney
MR
, et al;
TRALI Study Group
.
Risk factors and outcomes in transfusion-associated circulatory overload
.
Am J Med
.
2013
;
126
(
4
):
357.e29
-
357.e38
.
21.
Roubinian
NH
,
Hendrickson
JE
,
Triulzi
DJ
, et al;
National Heart, Lung, and Blood Institute (NHLBI) Recipient Epidemiology and Donor Evaluation Study-III (REDS-III)
.
Contemporary risk factors and outcomes of transfusion-associated circulatory overload
.
Crit Care Med
.
2018
;
46
(
4
):
577
-
585
.
22.
Clifford
L
,
Jia
Q
,
Subramanian
A
,
Yadav
H
,
Schroeder
DR
,
Kor
DJ
.
Risk factors and clinical outcomes associated with perioperative transfusion-associated circulatory overload
.
Anesthesiology
.
2017
;
126
(
3
):
409
-
418
.
23.
Looney
MR
,
Gilliss
BM
,
Matthay
MA
.
Pathophysiology of transfusion-related acute lung injury
.
Curr Opin Hematol
.
2010
;
17
(
5
):
418
-
423
.
24.
Wendelbo
Ø
,
Opheim
EN
,
Hervig
T
, et al
.
Cytokine profiling and post-transfusion haemoglobin increment in patients with haematological diseases
.
Vox Sang
.
2018
;
113
(
7
):
657
-
668
.
25.
Spitalnik
SL
,
Triulzi
D
,
Devine
DV
, et al;
State of the Science in Transfusion Medicine Working Groups
.
2015 Proceedings of the National Heart, Lung, and Blood Institute’s State of the Science in Transfusion Medicine symposium
.
Transfusion
.
2015
;
55
(
9
):
2282
-
2290
.
26.
Wiesen
AR
,
Hospenthal
DR
,
Byrd
JC
,
Glass
KL
,
Howard
RS
,
Diehl
LF
.
Equilibration of hemoglobin concentration after transfusion in medical inpatients not actively bleeding
.
Ann Intern Med
.
1994
;
121
(
4
):
278
-
280
.
27.
Franchini
M
,
Lippi
G
.
Relative risks of thrombosis and bleeding in different ABO blood groups
.
Semin Thromb Hemost
.
2016
;
42
(
2
):
112
-
117
.
28.
Zheng
B
.
Summarizing the goodness of fit of generalized linear models for longitudinal data
.
Stat Med
.
2000
;
19
(
10
):
1265
-
1275
.
29.
Francis
RO
,
Mahajan
S
,
Rapido
F
, et al
.
Reexamination of the chromium-51-labeled posttransfusion red blood cell recovery method
.
Transfusion
.
2019
;
59
(
7
):
2264
-
2275
.
30.
Donnenberg
AD
,
Kanias
T
,
Triulzi
DJ
,
Dennis
CJ
,
Meyer
EM
,
Gladwin
M
.
Improved quantitative detection of biotin-labeled red blood cells by flow cytometry
.
Transfusion
.
2019
;
59
(
8
):
2691
-
2698
.
31.
Edgren
G
,
Ullum
H
,
Rostgaard
K
, et al
.
Association of donor age and sex with survival of patients receiving transfusions
.
JAMA Intern Med
.
2017
;
177
(
6
):
854
-
860
.
32.
Guralnik
JM
,
Eisenstaedt
RS
,
Ferrucci
L
,
Klein
HG
,
Woodman
RC
.
Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia
.
Blood
.
2004
;
104
(
8
):
2263
-
2268
.
33.
Ferrucci
L
,
Semba
RD
,
Guralnik
JM
, et al
.
Proinflammatory state, hepcidin, and anemia in older persons
.
Blood
.
2010
;
115
(
18
):
3810
-
3816
.
34.
Salive
ME
,
Cornoni-Huntley
J
,
Guralnik
JM
, et al
.
Anemia and hemoglobin levels in older persons: relationship with age, gender, and health status
.
J Am Geriatr Soc
.
1992
;
40
(
5
):
489
-
496
.
35.
Cable
RG
,
Glynn
SA
,
Kiss
JE
, et al;
NHLBI Retrovirus Epidemiology Donor Study-II (REDS-II)
.
Iron deficiency in blood donors: the REDS-II Donor Iron Status Evaluation (RISE) study
.
Transfusion
.
2012
;
52
(
4
):
702
-
711
.
36.
Bandyopadhyay
S
,
Brittenham
GM
,
Francis
RO
,
Zimring
JC
,
Hod
EA
,
Spitalnik
SL
.
Iron-deficient erythropoiesis in blood donors and red blood cell recovery after transfusion: initial studies with a mouse model
.
Blood Transfus
.
2017
;
15
(
2
):
158
-
164
.
37.
Picker
SM
,
Radojska
SM
,
Gathof
BS
.
Prospective evaluation of double RBC collection using three different apheresis systems
.
Transfus Apheresis Sci
.
2006
;
35
(
3
):
197
-
205
.
38.
Picker
SM
,
Radojska
SM
,
Gathof
BS
.
In vitro quality of red blood cells (RBCs) collected by multicomponent apheresis compared to manually collected RBCs during 49 days of storage
.
Transfusion
.
2007
;
47
(
4
):
687
-
696
.
39.
Acker
JP
,
Hansen
AL
,
Kurach
JD
,
Turner
TR
,
Croteau
I
,
Jenkins
C
.
A quality monitoring program for red blood cell components: in vitro quality indicators before and after implementation of semiautomated processing
.
Transfusion
.
2014
;
54
(
10
):
2534
-
2543
.
40.
Ran
Q
,
Hao
P
,
Xiao
Y
,
Zhao
J
,
Ye
X
,
Li
Z
.
Effect of irradiation and/or leucocyte filtration on RBC storage lesions
.
PLoS One
.
2011
;
6
(
3
):
e18328
.
41.
Moroff
G
,
Holme
S
,
AuBuchon
JP
,
Heaton
WA
,
Sweeney
JD
,
Friedman
LI
.
Viability and in vitro properties of AS-1 red cells after gamma irradiation
.
Transfusion
.
1999
;
39
(
2
):
128
-
134
.
42.
Davey
RJ
,
McCoy
NC
,
Yu
M
,
Sullivan
JA
,
Spiegel
DM
,
Leitman
SF
.
The effect of prestorage irradiation on posttransfusion red cell survival
.
Transfusion
.
1992
;
32
(
6
):
525
-
528
.
43.
de Korte
D
,
Thibault
L
,
Handke
W
, et al;
Biomedical Excellence for Safer Transfusion (BEST) collaborative
.
Timing of gamma irradiation and blood donor sex influences in vitro characteristics of red blood cells
.
Transfusion
.
2018
;
58
(
4
):
917
-
926
.
44.
Steiner
ME
,
Ness
PM
,
Assmann
SF
, et al
.
Effects of red-cell storage duration on patients undergoing cardiac surgery
.
N Engl J Med
.
2015
;
372
(
15
):
1419
-
1429
.
45.
Lacroix
J
,
Hébert
PC
,
Fergusson
DA
, et al;
Canadian Critical Care Trials Group
.
Age of transfused blood in critically ill adults
.
N Engl J Med
.
2015
;
372
(
15
):
1410
-
1418
.
46.
Fergusson
DA
,
Hébert
P
,
Hogan
DL
, et al
.
Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low-birth-weight infants: the ARIPI randomized trial
.
JAMA
.
2012
;
308
(
14
):
1443
-
1451
.
47.
Heddle
NM
,
Cook
RJ
,
Arnold
DM
, et al
.
Effect of short-term vs. long-term blood storage on mortality after transfusion
.
N Engl J Med
.
2016
;
375
(
20
):
1937
-
1945
.
48.
Dhabangi
A
,
Ainomugisha
B
,
Cserti-Gazdewich
C
, et al
.
Effect of transfusion of red blood cells with longer vs shorter storage duration on elevated blood lactate levels in children with severe anemia: the TOTAL Randomized Clinical Trial
.
JAMA
.
2015
;
314
(
23
):
2514
-
2523
.
49.
Hunsicker
O
,
Hessler
K
,
Krannich
A
, et al
.
Duration of storage influences the hemoglobin rising effect of red blood cells in patients undergoing major abdominal surgery
.
Transfusion
.
2018
;
58
(
8
):
1870
-
1880
.
50.
Cook
RJ
,
Heddle
NM
,
Lee
KA
, et al
.
Red blood cell storage and in-hospital mortality: a secondary analysis of the INFORM randomised controlled trial
.
Lancet Haematol
.
2017
;
4
(
11
):
e544
-
e552
.
51.
Rydén
J
,
Clements
M
,
Hellström-Lindberg
E
,
Höglund
P
,
Edgren
G
.
A longer duration of red blood cell storage is associated with a lower hemoglobin increase after blood transfusion: a cohort study
.
Transfusion
.
2019
;
59
(
6
):
1945
-
1952
.
52.
Halmin
M
,
Rostgaard
K
,
Lee
BK
, et al
.
Length of storage of red blood cells and patient survival after blood transfusion: a binational cohort study
.
Ann Intern Med
.
2017
;
166
(
4
):
248
-
256
.
53.
Sørensen
E
,
Rigas
AS
,
Didriksen
M
, et al
.
Genetic factors influencing hemoglobin levels in 15,567 blood donors: results from the Danish Blood Donor Study
.
Transfusion
.
2019
;
59
(
1
):
226
-
231
.
54.
Sagiv
E
,
Fasano
RM
,
Luban
NLC
, et al
.
Glucose-6-phosphate-dehydrogenase deficient red blood cell units are associated with decreased posttransfusion red blood cell survival in children with sickle cell disease
.
Am J Hematol
.
2018
;
93
(
5
):
630
-
634
.
55.
Page
G
,
Kanias
T
,
Guo
YG
, et al
.
GWAS of osmotic hemolysis in 12,352 healthy blood donors identifies red cell genetic variants associated with steady state hemolysis in patients with sickle cell disease [abstract]
.
Blood
.
2017
;
130
(
suppl 1
). Abstract
1117
.
56.
Lanteri
MC
,
Kanias
T
,
Keating
S
, et al;
NHLBI Recipient Epidemiology Donor Evaluation Study (REDS)-III Program
.
Intradonor reproducibility and changes in hemolytic variables during red blood cell storage: results of recall phase of the REDS-III RBC-Omics study
.
Transfusion
.
2019
;
59
(
1
):
79
-
88
.
57.
Kanias
T
,
Busch
MP
;
National Heart, Lung, and Blood Institute Recipient Epidemiology Donor Evaluation Study III (REDS-III) Programme
.
Diversity in a blood bag: application of omics technologies to inform precision transfusion medicine
.
Blood Transfus
.
2019
;
1
-
5
.
58.
Guo
Y
,
Busch
MP
,
Seielstad
M
, et al;
National Heart, Lung, and Blood Institute Recipient Epidemiology Donor Evaluation Study (REDS)-III
.
Development and evaluation of a transfusion medicine genome wide genotyping array
.
Transfusion
.
2019
;
59
(
1
):
101
-
111
.
59.
Elzik
ME
,
Dirschl
DR
,
Dahners
LE
.
Correlation of transfusion volume to change in hematocrit
.
Am J Hematol
.
2006
;
81
(
2
):
145
-
146
.
60.
Davies
P
,
Robertson
S
,
Hegde
S
,
Greenwood
R
,
Massey
E
,
Davis
P
.
Calculating the required transfusion volume in children
.
Transfusion
.
2007
;
47
(
2
):
212
-
216
.
61.
Pieracci
FM
,
Barnett
CC
Jr
,
Townsend
N
, et al
.
Sexual dimorphism in hematocrit response following red blood cell transfusion of critically ill surgical patients
.
ISRN Hematol
.
2012
;
2012
:
298345
.
62.
Lee
JH
,
Kim
DH
,
Kim
K
, et al
.
Predicting change of hemoglobin after transfusion in hemodynamically stable anemic patients in emergency department
.
J Trauma
.
2010
;
68
(
2
):
337
-
341
.
63.
Naidech
AM
,
Kahn
MJ
,
Soong
W
,
Green
D
,
Batjer
HH
,
Bleck
TP
.
Packed red blood cell transfusion causes greater hemoglobin rise at a lower starting hemoglobin in patients with subarachnoid hemorrhage
.
Neurocrit Care
.
2008
;
9
(
2
):
198
-
203
.
64.
Otto
JM
,
Plumb
JOM
,
Clissold
E
, et al
.
Hemoglobin concentration, total hemoglobin mass and plasma volume in patients: implications for anemia
.
Haematologica
.
2017
;
102
(
9
):
1477
-
1485
.
65.
D’Alessandro
A
,
Culp-Hill
R
,
Reisz
JA
, et al;
Recipient Epidemiology and Donor Evaluation Study-III (REDS-III)
.
Heterogeneity of blood processing and storage additives in different centers impacts stored red blood cell metabolism as much as storage time: lessons from REDS-III-Omics
.
Transfusion
.
2019
;
59
(
1
):
89
-
100
.
66.
DeSimone
RA
,
Hayden
JA
,
Mazur
CA
, et al
.
Red blood cells donated by smokers: a pilot investigation of recipient transfusion outcomes
.
Transfusion
.
2019
;
59
(
8
):
2537
-
2543
.
67.
Vostal
JG
,
Buehler
PW
,
Gelderman
MP
, et al
.
Proceedings of the Food and Drug Administration’s public workshop on new red blood cell product regulatory science 2016
.
Transfusion
.
2018
;
58
(
1
):
255
-
266
.
68.
Kanias
T
,
Stone
M
,
Page
GP
, et al;
NHLBI Recipient Epidemiology Donor Evaluation Study (REDS)-III Program
.
Frequent blood donations alter susceptibility of red blood cells to storage- and stress-induced hemolysis
.
Transfusion
.
2019
;
59
(
1
):
67
-
78
.
69.
Roubinian
NH
,
Murphy
EL
,
Swain
BE
, et al;
Northern California Kaiser Permanente DOR Systems Research Initiative
.
Predicting red blood cell transfusion in hospitalized patients: role of hemoglobin level, comorbidities, and illness severity
.
BMC Health Serv Res
.
2014
;
14
(
1
):
213
.
70.
Carson
JL
,
Guyatt
G
,
Heddle
NM
, et al
.
Clinical practice guidelines from the AABB: red blood cell transfusion thresholds and storage
.
JAMA
.
2016
;
316
(
19
):
2025
-
2035
.
71.
Carson
JL
,
Stanworth
SJ
,
Roubinian
N
, et al
.
Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion
.
Cochrane Database Syst Rev
.
2016
;
10
:
CD002042
.
You do not currently have access to this content.