Key Points

  • Dormant multiple myeloma cells express a unique transcriptome signature.

  • This unique transcriptome signature controls dormancy, predicts survival, and identifies new treatment targets.

Abstract

The era of targeted therapies has seen significant improvements in depth of response, progression-free survival, and overall survival for patients with multiple myeloma. Despite these improvements in clinical outcome, patients inevitably relapse and require further treatment. Drug-resistant dormant myeloma cells that reside in specific niches within the skeleton are considered a basis of disease relapse but remain elusive and difficult to study. Here, we developed a method to sequence the transcriptome of individual dormant myeloma cells from the bones of tumor-bearing mice. Our analyses show that dormant myeloma cells express a distinct transcriptome signature enriched for immune genes and, unexpectedly, genes associated with myeloid cell differentiation. These genes were switched on by coculture with osteoblastic cells. Targeting AXL, a gene highly expressed by dormant cells, using small-molecule inhibitors released cells from dormancy and promoted their proliferation. Analysis of the expression of AXL and coregulated genes in human cohorts showed that healthy human controls and patients with monoclonal gammopathy of uncertain significance expressed higher levels of the dormancy signature genes than patients with multiple myeloma. Furthermore, in patients with multiple myeloma, the expression of this myeloid transcriptome signature translated into a twofold increase in overall survival, indicating that this dormancy signature may be a marker of disease progression. Thus, engagement of myeloma cells with the osteoblastic niche induces expression of a suite of myeloid genes that predicts disease progression and that comprises potential drug targets to eradicate dormant myeloma cells.

REFERENCES

REFERENCES
1.
Kumar
SK
,
Rajkumar
V
,
Kyle
RA
, et al
.
Multiple myeloma
.
Nat Rev Dis Primers
.
2017
;
3
:
17046
.
2.
Ghobrial
IM
.
Myeloma as a model for the process of metastasis: implications for therapy
.
Blood
.
2012
;
120
(
1
):
20
-
30
.
3.
Nijhof
IS
,
van de Donk
NWCJ
,
Zweegman
S
,
Lokhorst
HM
.
Current and new therapeutic strategies for relapsed and refractory multiple myeloma: an update
.
Drugs
.
2018
;
78
(
1
):
19
-
37
.
4.
Lawson
MA
,
McDonald
MM
,
Kovacic
N
, et al
.
Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche
.
Nat Commun
.
2015
;
6
(
1
):
8983
.
5.
Croucher
PI
,
McDonald
MM
,
Martin
TJ
.
Bone metastasis: the importance of the neighbourhood
.
Nat Rev Cancer
.
2016
;
16
(
6
):
373
-
386
.
6.
Sosa
MS
,
Bragado
P
,
Aguirre-Ghiso
JA
.
Mechanisms of disseminated cancer cell dormancy: an awakening field
.
Nat Rev Cancer
.
2014
;
14
(
9
):
611
-
622
.
7.
Ghajar
CM
.
Metastasis prevention by targeting the dormant niche
.
Nat Rev Cancer
.
2015
;
15
(
4
):
238
-
247
.
8.
Price
TT
,
Burness
ML
,
Sivan
A
, et al
.
Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone
.
Sci Transl Med
.
2016
;
8
(
340
):
340ra73
.
9.
Lo Celso
C
,
Lin
CP
,
Scadden
DT
.
In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow
.
Nat Protoc
.
2011
;
6
(
1
):
1
-
14
.
10.
Chattopadhyay
PK
,
Gierahn
TM
,
Roederer
M
,
Love
JC
.
Single-cell technologies for monitoring immune systems
.
Nat Immunol
.
2014
;
15
(
2
):
128
-
135
.
11.
Nguyen
A
,
Khoo
WH
,
Moran
I
,
Croucher
PI
,
Phan
TG
.
Single cell RNA sequencing of rare immune cell populations
.
Front Immunol
.
2018
;
9
:
1553
.
12.
Giustacchini
A
,
Thongjuea
S
,
Barkas
N
, et al
.
Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia
.
Nat Med
.
2017
;
23
(
6
):
692
-
702
.
13.
Chen
Z
,
Orlowski
RZ
,
Wang
M
,
Kwak
L
,
McCarty
N
.
Osteoblastic niche supports the growth of quiescent multiple myeloma cells
.
Blood
.
2014
;
123
(
14
):
2204
-
2208
.
14.
Oyajobi
BO
,
Muñoz
S
,
Kakonen
R
, et al
.
Detection of myeloma in skeleton of mice by whole-body optical fluorescence imaging
.
Mol Cancer Ther
.
2007
;
6
(
6
):
1701
-
1708
.
15.
Power
CA
,
Pwint
H
,
Chan
J
, et al
.
A novel model of bone-metastatic prostate cancer in immunocompetent mice
.
Prostate
.
2009
;
69
(
15
):
1613
-
1623
.
16.
Wu
AR
,
Neff
NF
,
Kalisky
T
, et al
.
Quantitative assessment of single-cell RNA-sequencing methods
.
Nat Methods
.
2014
;
11
(
1
):
41
-
46
.
17.
Bolotin
DA
,
Poslavsky
S
,
Mitrophanov
I
, et al
.
MiXCR: software for comprehensive adaptive immunity profiling
.
Nat Methods
.
2015
;
12
(
5
):
380
-
381
.
18.
Ye
J
,
Ma
N
,
Madden
TL
,
Ostell
JM
.
IgBLAST: an immunoglobulin variable domain sequence analysis tool
.
Nucleic Acids Res
.
2013
;
41
(
web server issue
):
W34
-
W40
.
19.
Vallejos
CA
,
Marioni
JC
,
Richardson
S
.
BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
.
PLOS Comput Biol
.
2015
;
11
(
6
):
e1004333
.
20.
Vallejos
CA
,
Richardson
S
,
Marioni
JC
.
Beyond comparisons of means: understanding changes in gene expression at the single-cell level
.
Genome Biol
.
2016
;
17
(
1
):
70
.
21.
Butler
A
,
Hoffman
P
,
Smibert
P
,
Papalexi
E
,
Satija
R
.
Integrating single-cell transcriptomic data across different conditions, technologies, and species
.
Nat Biotechnol
.
2018
;
36
(
5
):
411
-
420
.
22.
Huang
W
,
Sherman
BT
,
Lempicki
RA
.
Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
.
Nucleic Acids Res
.
2009
;
37
(
1
):
1
-
13
.
23.
Huang
W
,
Sherman
BT
,
Lempicki
RA
.
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
.
Nat Protoc
.
2009
;
4
(
1
):
44
-
57
.
24.
Gaujoux
R
,
Seoighe
C
.
A flexible R package for nonnegative matrix factorization
.
BMC Bioinformatics
.
2010
;
11
:
367
.
25.
Janky
R
,
Verfaillie
A
,
Imrichová
H
, et al
.
iRegulon: from a gene list to a gene regulatory network using large motif and track collections
.
PLOS Comput Biol
.
2014
;
10
(
7
):
e1003731
.
26.
Shannon
P
,
Markiel
A
,
Ozier
O
, et al
.
Cytoscape: a software environment for integrated models of biomolecular interaction networks
.
Genome Res
.
2003
;
13
(
11
):
2498
-
2504
.
27.
Bastian
M
,
Heymann
S
,
Jacomy
M
.
Gephi: an open source software for exploring and manipulating networks.
https://gephi.org/publications/gephi-bastian-feb09.pdf. Accessed 22 July 2018.
28.
Schneider
CA
,
Rasband
WS
,
Eliceiri
KW
.
NIH Image to ImageJ: 25 years of image analysis
.
Nat Methods
.
2012
;
9
(
7
):
671
-
675
.
29.
Limaye
A
.
Drishti
:
a volume exploration and presentation tool
.
Proc. SPIE 8506, Developments in X-Ray Tomography VIII
.
2012
;
85060X
.
doi: 10.1117/12.935640
.
30.
Rajkumar
SV
,
Dimopoulos
MA
,
Palumbo
A
, et al
.
International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma
.
Lancet Oncol
.
2014
;
15
(
12
):
e538
-
e548
.
31.
Martin
SK
,
Diamond
P
,
Williams
SA
, et al
.
Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells
.
Haematologica
.
2010
;
95
(
5
):
776
-
784
.
32.
Seckinger
A
,
Delgado
JA
,
Moser
S
, et al
.
Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment
.
Cancer Cell
.
2017
;
31
(
3
):
396
-
410
.
33.
Chng
WJ
,
Kumar
S
,
Vanwier
S
, et al
.
Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling
.
Cancer Res
.
2007
;
67
(
7
):
2982
-
2989
.
34.
Mulligan
G
,
Mitsiades
C
,
Bryant
B
, et al
.
Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib
.
Blood
.
2007
;
109
(
8
):
3177
-
3188
.
35.
Seckinger
A
,
Meissner
T
,
Moreaux
J
, et al
.
Clinical and prognostic role of annexin A2 in multiple myeloma
.
Blood
.
2012
;
120
(
5
):
1087
-
1094
.
36.
Seckinger
A
,
Hillengass
J
,
Emde
M
, et al
.
CD38 as immunotherapeutic target in light chain amyloidosis and multiple myeloma: association with molecular entities, risk, survival, and mechanisms of upfront resistance
.
Front Immunol
.
2018
;
9
:
1676
.
37.
Radl
J
,
Croese
JW
,
Zurcher
C
,
Van den Enden-Vieveen
MH
,
de Leeuw
AM
.
Animal model of human disease Multiple myeloma
.
Am J Pathol
.
1988
;
132
(
3
):
593
-
597
.
38.
Garrett
IR
,
Dallas
S
,
Radl
J
,
Mundy
GR
.
A murine model of human myeloma bone disease
.
Bone
.
1997
;
20
(
6
):
515
-
520
.
39.
Brunet
JP
,
Tamayo
P
,
Golub
TR
,
Mesirov
JP
.
Metagenes and molecular pattern discovery using matrix factorization
.
Proc Natl Acad Sci USA
.
2004
;
101
(
12
):
4164
-
4169
.
40.
Rusinova
I
,
Forster
S
,
Yu
S
, et al
.
Interferome v20: an updated database of annotated interferon-regulated genes
.
Nucleic Acids Res
.
2013
;
41
(
database issue
):
D1040
-
D1046
.
41.
Veillette
A
,
Thibaudeau
E
,
Latour
S
.
High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages
.
J Biol Chem
.
1998
;
273
(
35
):
22719
-
22728
.
42.
Spilsbury
K
,
O’Mara
MA
,
Wu
WM
,
Rowe
PB
,
Symonds
G
,
Takayama
Y
.
Isolation of a novel macrophage-specific gene by differential cDNA analysis
.
Blood
.
1995
;
85
(
6
):
1620
-
1629
.
43.
Liongue
C
,
Hall
CJ
,
O’Connell
BA
,
Crosier
P
,
Ward
AC
.
Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration
.
Blood
.
2009
;
113
(
11
):
2535
-
2546
.
44.
Bournazos
S
,
Wang
TT
,
Ravetch
JV
.
The role and function of Fcγ receptors on myeloid cells
.
Microbiol Spectr
.
2016
;
4
(
6
):
doi:10.1128/microbiolspec.MCHD-0045-2016
45.
He
MF
,
Wang
S
,
Wang
Y
,
Wang
XN
.
Modeling cell-in-cell structure into its biological significance
.
Cell Death Dis
.
2013
;
4
(
5
):
e630
.
46.
Duelli
D
,
Lazebnik
Y
.
Cell fusion: a hidden enemy?
Cancer Cell
.
2003
;
3
(
5
):
445
-
448
.
47.
Asosingh
K
,
Radl
J
,
Van Riet
I
,
Van Camp
B
,
Vanderkerken
K
.
The 5TMM series: a useful in vivo mouse model of human multiple myeloma
.
Hematol J
.
2000
;
1
(
5
):
351
-
356
.
48.
Yakes
FM
,
Chen
J
,
Tan
J
, et al
.
Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth
.
Mol Cancer Ther
.
2011
;
10
(
12
):
2298
-
2308
.
49.
Schroeder
GM
,
An
Y
,
Cai
ZW
, et al
.
Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective and orally efficacious inhibitor of the Met kinase superfamily
.
J Med Chem
.
2009
;
52
(
5
):
1251
-
1254
.
50.
Shiozawa
Y
,
Pedersen
EA
,
Patel
LR
, et al
.
GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche
.
Neoplasia
.
2010
;
12
(
2
):
116
-
127
.
51.
Wilkins
BS
.
Histology of normal haemopoiesis: bone marrow histology I
.
J Clin Pathol
.
1992
;
45
(
8
):
645
-
649
.
52.
Jin
Y
,
Nie
D
,
Li
J
, et al
.
Gas6/AXL signaling regulates self-renewal of chronic myelogenous leukemia stem cells by stabilizing β-catenin
.
Clin Cancer Res
.
2017
;
23
(
11
):
2842
-
2855
.
53.
Bidwell
BN
,
Slaney
CY
,
Withana
NP
, et al
.
Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape
.
Nat Med
.
2012
;
18
(
8
):
1224
-
1231
.
54.
Goyette
MA
,
Duhamel
S
,
Aubert
L
, et al
.
The receptor tyrosine kinase AXL is required at multiple steps of the metastatic cascade during HER2-positive breast cancer progression
.
Cell Reports
.
2018
;
23
(
5
):
1476
-
1490
.
55.
Ludwig
KF
,
Du
W
,
Sorrelle
NB
, et al
.
Small-molecule inhibition of Axl targets tumor immune suppression and enhances chemotherapy in pancreatic cancer
.
Cancer Res
.
2018
;
78
(
1
):
246
-
255
.
56.
Palisoul
ML
,
Quinn
JM
,
Schepers
E
, et al
.
Inhibition of the receptor tyrosine kinase AXL restores paclitaxel chemosensitivity in uterine serous cancer
.
Mol Cancer Ther
.
2017
;
16
(
12
):
2881
-
2891
.
57.
Antony
J
,
Huang
RY
.
AXL-driven EMT state as a targetable conduit in cancer
.
Cancer Res
.
2017
;
77
(
14
):
3725
-
3732
.
58.
Lendvai
N
,
Yee
AJ
,
Tsakos
I
, et al
.
Phase IB study of cabozantinib in patients with relapsed and/or refractory multiple myeloma
.
Blood
.
2016
;
127
(
19
):
2355
-
2356
.
59.
Suominen
MI
,
Fagerlund
KM
,
Alhoniemi
E
,
Rissanen
JP
,
Halleen
JM
,
Aftab
DT
. Effects of combination treatment with cabozantinib and bortezomib in the 5TGM1 murine multiple myeloma model. In: Proceedings from the 106th Annual Meeting of the American Association for Cancer Research; 18-22 April 2015; Philadelphia, PA.
Abstract 786
.
60.
Hose
D
,
Rème
T
,
Hielscher
T
, et al
.
Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma
.
Haematologica
.
2011
;
96
(
1
):
87
-
95
.
You do not currently have access to this content.